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CHAPTER 1

INTRODUCTION

The acoustic reflectivity from the sea floor is often an important factor

for the performance of ASW systems in different environments, such as in deep

water when using the bottom bounce paths, and in general for sound propagation in

shallow water. Furthermore, it plays a role in the degradation of towed array

operations due to reflected tow ship radiated noise and in certain weapon systems

and with the frequency range of interest which spans over a large band from a few

Hz to tenths of kHz. Therefore there is a need to be able to accurately measure

the reflectivity or predict it from known or assumed geoacoustical data.

At several national naval research laboratories as well at the SACLANT ASW S

Research Center, La Spezia, work has been pursued in this field for more than 20

years making a significant improvement in our knowledge in this field. During

this period, the experimental techniques have changed from the use of analog to 0

digital acquisition, yielding higher resolution and accuracy, and the subsequent

use of computers to analyze the data results in faster and more flexible ways of

reporting. Furthermore, today we have a much better, though not complete, under-

standing and knowledge of the geoacoustical parameters for the bottom, including

deeper layers.

0

The results from the SACLANTCEN activity has appeared in several published
[11,[2]

and unpublished reports and articles. However, to make this more acces-

sible for potential users, it was felt worthwhile to update the material and

issue some of it as a single report.

Special emphasis has been put into combining the theoretical results, with

results obtained not from model tank experiments but from experiments in the real

ocean environment where the action takes place. For this reason experimental and
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digital analysis techniques are included in the report. Furthermore, due to the

wide introduction of microcomputers, a set of algorithms for the IBM-PC computer

family has been developed to enable the user to carry out "experiments' either in

the office or on board to study the effect of the bottom layering on the reflec-

tivity. Instructions for using these programmed algorithms are contained in

appendix A.

It is hoped that this summary report will be useful especially for operators

and scientists new to this field. However, it should be stressed that only the

plane wave reflection coefficient will be considered in this report. For infor-

mation concerning the complete wave solution, readers should look into new algo-

rithms such as the Fast Field or SAFARI models.

This work has been sponsored by the Office of Naval Research and the Naval

Underwater Systems Center and was done as a visiting scientist during an inter-

esting and stimulating stay at the Naval Underwater Systems Center Code 10 in New

London.

2
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CHAPTER 2

GENERAL EQUATIONS

From the classical theory of elasticity, we know that a wave propagating

through a homogeneous media is determined by the compressional wave potential

and the shear wave potentials satisfying the following wave equations:

21 a2  
'

2 a 2

a 2 at2
2 1 a2O (2-1)

V~b 1  /32 at2 4

i1,2,3

with a as the compressional wave velocity and as the shear wave velocity.

The displacement B which completely determines a plane wave is expressed as:

U = grad P + curl 0 (2-2)

Introducing an orthogonal coordinate system with the displacement u in the x

direction and w in the z direction, equation (2) simplifies to:

ax az (2-3)

W___+ ,.

az ax

By the use of the two elastic constants (Lame'), the stresses can also be related

to the potentials through u and w as:

/au aw auo= ax az + 2 u-ax

au +aw + 2/ aw (2-4)

ax az az
/ u + aw

3z a3

J-0
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The relationship between the Lame' constants, density, and compressional and

shear wave velocity is the following:

p p

Analogous to the theory of electricity, we can introduce the concept of an

impedance Z defined as the ratio between pressure and the normal component of the

particle velocity:

Z = pl4V - i - (2-5)

where p is the pressure, a the normal stress, and w the particle velocity. The

minus sign is due to the difference of defining pressure and stress.

In the case where the medium is a liquid, it cannot sustain shear which

means that / - 0. This reduces equation (2-1) to:

a2 a2  __ (2-6)

ax2  az2  a2  at2

With the use of equations (2-1), (2-3) and (2-4), one obtains for or:

o=P at2

Using Bernoulli's method of assuming that the solution can be written as a

product of functions, each depending only on one variable, we equate:

(x, z, t) = F(x) • G(z) • T(t)

4

1 %
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which, after differentiation with respect to x, z and t, gives:

2 F" G" T- + -•

'F G T

With T depending only on t and F, and G being independent of t, we have:

¥ /"
T -,2

TS

The choice of sign for the separation constant is due to the requirement of

periodic solutions in time. For the F and G functions, we can write:

F" G" 4

F G a2

F" 2
and setting - =h

F

we have - h2  - K 2

G a 2

which leads to solutions of the form:

F = e -"x and G e 
"

Letting the waves propagate in the direction of the positive x-axis, the

potential becomes:

(x, z, t) = (Ae '
IKz + Be - IKz) -e ( h x " 

-t)

where the factor to A and B respectively corresponds to waves travelling in the

positive and negative direction of the z-axis as seen on figure 2-1. ,

5
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x

K k

Figure 2-1. Wavefront Geometry

So we are dealing with plane waves propagating with the wavenumbers k Wi a

normal to the wavefront, h in the x direction and K in the z direction, satis-

2 ~22
fying the important condition k= + K

From figure 2-1 we obtain the apparent horizontal velocity, which is the

horizontal phase velocity C = w/h = a/sin 0. When 2/ a> h2 , we see that the

potential will not oscillate with respect to z but decay exponentially. These

types of waves are called inhomogeneous waves and are frequently associated with

boundary interaction as seen later.

LMO 6

V.' %
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CHAPTER 3

REFLECTION COEFFICIENT AND IMPEDANCE

Since the waves we are interested in are interacting with the sea floor and

the layers below, the solutions to the wave equation must therefore satisfy

certain boundary conditions depending on the nature of the boundary. The condi-

tions are usually expressed directly in terms of stress and displacement.

For example, for two elastic media in welded contact, both stress and dis-

placement must be continuous across the boundary. In the case of a liquid-solid

or liquid-liquid interface, only the normal component of the stress and the

displacement has to be continuous and the shear stress disappears. For a free

and unloaded boundary, all stresses are zero.

On some occasions it is more advantageous to use velocity potentials instead

of displacement potentials which can be done by multiplying the displacements by

iti. The requirement of continuity of stress and displacement, therefore, can

also be expressed in terms of stress and particle velocity or impedance as

defined in equation (2-5).

The boundary which is of main interest is the interface between the water

column and the sea floor. Let us now determine the reflection and transmission

coefficients for a plane wave incident from the water as shown in figure 3-1.

What the bottom looks like is of no concern at this moment and we will only treat

it as a "black box."

7

'2'.
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WATER x
BOTTOM

z

Figure 3-1. Plane Wave Reflection from the Bottom

From the Fermat principle (minimum travel time), we know that 9i 9, which

means that:

K, = Kr = K and hi = h, = h

The total field in the water can then be written as:

+ R • (eKz + R • e - z) eI(hx - wt)

where R is the reflection coefficient.

Differentiating this with respect to t and z, the pressure p and the par-

ticle velocity are expressed as:

____Y _ -pp( 2 (e 'Kz + R  e - '
K

Z ) " el(x -  it

= -i a 0 = G K (e - R • e ) • - it)

8z

8
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which at the boundary z - 0, reduces to:

p = pW2 (1 + R) ei(hx - wt); ' = (1 - R) e(hx w)

Using the definition for the impedance and h = k cos 6 and k co/a, we end up

with the following equation for the bottom impedance:

pa (1 + R)

co ( - R)

or for the reflection coefficient R:

with Zo = pa/COS 9 being the impedance for the water.

In other words, if the bottom impedance is known, the reflection coefficient

can be calculated from the above formula. However, as we will see later, the

impedance often is a complicated function depending on both frequency and angle 0

of incidence. This is the plane wave reflection coefficient which in optics is

termed the Fresnel or Rayleigh coefficient.

Assuming now that the bottom can be treated as a liquid half-space (often a

good assumption), the shear modulus /U- 0. As a boundary condition, we will use

the continuity of a across the interface. The potential in the bottom, with T

being the transmission coefficient, is:

ot =T • eI '
K Z. ei(hx

- wt)

Differentiating twice with respect to t, we obtain the stress in the bottom as:

U P2bt = W2 pbT eiKoZ . e (hx - t)

giving:

T =P/Pb (1 + R)

9

111 ''11 l~ t Ii
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or expressed as a function of impedance:

2 •pZ
Pb (Z + ZO)

By knowing the impedance Z at the boundary it is straightforward to calcu-

late both the reflection and transmission coefficients. Whereas to get the angle

of the transmitted wave, information of the bottom itself is required.

Now let us consider some simple examples looking at the bottom reflection

characteristics for different situations.

10%
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CHAPTER 4

THE HALF-SPACE BOTTOM

In the ocean, the bottom often consists of soft unconsolidated sediments

which acoustically can be considered liquid due to the very low shear modulus.

We will therefore study this case in more detail. Figure 4-1 illustrates our

simple model where water has a density of p and a velocity of a and the bottom

has a density of Pi and a compressional velocity of a,. The angle of incidence in

the water is 8 and the angle of the transmitted wave in the bottom is 81.

a p

Figure 4-1. Simple Bottom Model

Given that the horizontal phase velocity c along the interface must be the S

same in the water and in the bottom, we get from figure 2-1:

c = a/sin 8 = a/sin 8,
or

a/, = sin 0/sin 8,

which is the Snell's refraction law.

Using the potential for the transmitted wave and equation (2-5), the imped-

ance Zj for the bottom, with ai/COS 81 as the vertical phase velocity, becomes:

*i =ZI -
COs a,

The reflection coefficient expressed by density, wave velocity, and angle of

incidence becomes:

p a, Cos- p a cos 9,

p a, COS + p a COS 01

Li 11
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which with Snell's Law reduces to the classical reflection coefficient:

R a -cos e - sin (4-1)

a, cos e + N/n2 - s in 2 a

where a = p/p is the density contrast and n a/ai the refractive index.

When studying the reflection coefficient at angles close to grazing, the

following simplified expression can be obtained by using the grazing angle

E= 90 - 8 instead of the angle of incidence:

a sin E - n

a • sin E + \/ 2 O

For small grazing angles with sin E 2 E and COS E 1 , the following can be

obtained:

a

a 2[

I' 2 _ 11

Using the Taylor expression for the exponential function

e-1 + x +*

the reflection coefficient near grazing can be written as:

2"a

R - -e v 1

This expression will be used later to look at reflection loss anomalies near

grazing.

The form of the reflection coefficient depends on the ratios of a and n. we

will consider three cases corresponding to values observed in the real world: the

intromission angle, the critical angle, and no critical or intromission angle.

Appendices B and C contain discussions of the values for the bottom geoacoustical

12
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parameters observed in the sea floor environment. However, in some of the fol-

lowing examples, extreme values for these parameters have been used in order to

emphasize their relative importance on the reflection coefficient. 0

INTROMISSION ANGLE CASE: 1 < n < a

0
This is the most common case with the top bottom layer consisting of uncon-

solidated sediments as has been observed during a large number of experiments.

The argument of the square root In2 - sin 2 8 is always positive. The coeffi-

cient remains real for all angles and is zero for:

a~ cos 6 =,/n2 -sin 2 9

or
sin 8e =

a n I2

a2 - 1
This angle 88 is called the intromission anqle or, in optics, the Brewster

angle. In optics, at this angle, the reflected and the transmitted waves are

perpendicular to each other; however, in acoustics this is not the case due to

the density effect. In nature where some attenuation is always present, the

reflection coefficient will not be zero but finite (as will be discussed later).

The phase shift will be zero for angles steeper than the intromission angle and

180 ° for more grazing angles, meaning that a reflected signal will be inverted.

To show the behavior of the reflection coefficient curve, we will use

results obtained from bottom cores taken in the deep Mediterranean Naples Abyssal

Plain. The averages and standard deviations for the upper 50 cm have been com-

puted as:

relative compressional velocity a, = 0.977 ± 0.004

relative density P = 1.39± 0.04

13
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the bottom and the density of the bottom water. The reason for using relative

values, as we will be doing for the rest of the report, is that they are inde-

pendent of seasonal changes in the water column.

Also instead of the reflection coefficient, we will use the reflection loss

in dB defined as -20 Log (R). The reason is that we will need the losses in dB

for the sonar equation.

Figure 4-2 illustrates the loss curve corresponding to the above data and

the actual measured losses from the water/sediment interface. One will notice

excellent agreement except around the intromission angle where the effect of

attenuation is noticeable.

ANGLE OF INCIDENCE
0 10 20 30 40 50 60 70 80 90

5 I I I 1 I I

REFLECTION LOSS UPPER LAYER - NAPOLI

10-

COMPUTED FROM AVERAGE OF 21 CORES

20 " "

ATTENUATION
25 (a) 1.5 dB/WAVE LENGTH • RUN 1 \-I

(b) 0.6 dB/WAVE LENGTH * RUN 2

(c) 0.3 dB/WAVE LENGTH30 \I

dB LOSS c

Figure 4-2. Reflection Loss (Intromission Angle Case)

14
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CRITICAL ANGLE CASE: n < 1, n < m

This case of having a higher wave velocity in the bottom than in the water

6
is usually found when the bottom is composed of coarser sediments such as sand.

Using equation (4-1), for angles of incidence larger than arcsin (n), the

reflection coefficient R becomes complex with a magnitude of one and can be

written as R = e where 0 is the phase shift (not to be confused with the 0

previously used for potentials). This angle is called the critical angle Oc,

For angles more grazing, the reflection becomes total with all the incident

energy being reflected and with the presence of an inhomogeneous wave travelling

in the bottom along the interface. The phase shift is expressed as:

= -2 arc tan )
a Cos )

The phase shift is zero for angles of incidence less than Ocr and increases

monotonic to 1800 at grazing. The sign of the phase shift is determined from the

direction of the z-axis.

Figure 4-3 illustrates the reflection loss for a sandy bottom with the

relative wave velocity a - 1.13 and the relative density p - 2.0. The loss curves

for taking attenuation into account will be discussed in the next chapter.

NO CRITICAL OR INTROMISSION ANGLE CASE: 1 < n, a < n

This is a rare situation which has been included for completeness and can

occur in the case where the bottom contains gas bubbles, such as methane caused

by decomposition of organic matter in the bottom. This is normally observed in

lakes or bays and possibly could be more common in the future as a result of

pollution.

15
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qA

0 10 20 30 40 50 600acr 70 80 90

0 ~~ANGLE OF INCIDENCE .-- 10
1 - 1600

2- 1400

3-ATTENUATION -- 1200

4- 0.0 dB/WAVELENGTH / -1000

5. 0. dB/WAVELENGTH - w 800

6- w'---- 1.5 dB/WAVELENGTH =.600
U- C

7- Uj 400

8 200
9 -- - - - - - - -- - - --- 100

Figure 4-3. Reflection toss (Critical Angle Case)

The presence of gas bubbles has little effect on density but a dramatic

effect on wave velocity through a strong increase in the compressibility of the

sediments. To understand this, let us look at a unit volume of bottom material

as seen in figure 4-4.

GAS

* WATER

SOLI

igr 4-.Sdmn ntVlm

16I
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We will assume that the bottom is composed of a mixture of non-resonant

adiabatic-behaving gas bubbles, water, and solids. We will also assume that we

can treat such a sediment as an ideal three-component mixture and that the

equations for elastic waves are valid.

We will now introduce the concept of porosity, defined as the ratio between

the volume of the voids and the total volume of the sediment. The volume of

gases, water and solids are represented in the following ratios as g, x and y

with g + x + y - 1. The porosity n then becomes n - g + x.

If the density of the solid particulate matter in the sediment is constant,

then from the definition of porosity, the bulk sediment density is given by:

ps=d pg g +pw .(n - g) + (1-n) ps

where the indices g, w and s respectively refer to gas, water and solid.

0

The sound velocity for a liquid is given by

a~v~

where B is the compressibility. We assume that B can be expressed as the sum of

the three component moduli, so in terms of porosity we get:

Bsed = B9g g + B,. (n -9g) + ( )1-n).,

and for the wave velocity

a: y [Pgg + p-(fl - g) + (1 - n)-p.] -[Bg + B,,(n - g) + (1-n)*B,,]

which is the so-called Woods equation for a three-component mixture. The validity

of the above assumptions has been verified through many experiments and in a

later chapter we will use the porosity as an independent parameter to parame-

terize the wave velocity and sediment density.

17
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Figure 4-5 illustrates an example of the relative wave velocity as a

function of gas content for a 70/80 percent porosity sediment and a methane-

nitrogen mixture, showing the very marked effect for even small quantities of

free gas bubbles.

RELATIVE SOUND VELOCITY
1.0-

0.9-
0.8-
0.7-
0.6- 80% POROSITY

0.5- " --- 70% POROSITY

0.4-

0.3- 10:1 CH4:N2

0.2-

0.1- GAS CONTENT

0-6  10-5  10-4  10-3  10-2

Figure 4-5. Wave Velocity as Function of Gas Content

Now assuming that n >> sin 0, equation (4-1) can be reduced to the simple

expression:

zi/z. cosa- 1
z1/z cosO+1

showing that R only depends on the impedance ratio and the angle of incidence

with a 1800 phase shift for all angles.
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Figure 4-6 plots the reflection loss for a relative density p - 1.3 and a

relative wave velocity a - 0.2 equal to a gas content 0.001. Also on the same

plot are shown reflection losses measured in a lake near the SACLANTCEN where the S

bottom contained a high concentration of free methane of which some was released

for each shoot fired during the experiment. The reflected pulses received were

all inverted due to the 180* phase shift from this almost perfect pressure

release interface.

0 10 20 30 40 50 60 70 .80 90
SIIII I I I

ANGLE OF INCIDENCE
1-

3-CO0
4- 2z

-0

LA.

7 cc MEASURED LOSSES

8

91

Figure 4-6. Calculated and Measured Reflection Losses
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CHAPTER 5

ATTENUATION

Until now we have ignored attenuation in our calculations of the reflection

coefficient, an idealization which is not always permissible. Real-bottom mate-

rials absorb energy; this results in a smoothing of the reflection coefficient

curves, especially near the critical or the intromission angle. In this report,

we will not deal with the actual attenuation mechanisms or processes but will

introduce attenuation through complex wavenumbers and wave velocities. Looking at

the propagation of a wave with a complex wave velocity a = a (1 -jv), we have

for the wavenumber -k kk' =/ua (1 - iv) -k (1 + iv)

eikx  eik(l+iv)x e-x ikX

where the first factor represents the attenuation. The imaginary part of is a

function of frequency and through this report we will consider a linear depen-

dence, which corresponds to a constant attenuation 6 in dB per wavelength .

27r
Thus, withA = -k-, we get:

6 = 20 • log e -kA = 20 . log e2f

and: = a (1- i 0.0183 6)

which can be used in the different expressions for the reflection coefficient.

With the presence of attenuation, it can be shown that neither total reflec-

tion nor total transmission exists except at grazing. The analytical calculations

for the reflection coefficient are quite lengthy and the effect is perhaps better

illustrated by using our previous examples. Figures 4-2 and 4-3 illustrated the

reflection losses for varying degrees of attenuation. The smoothing effect of the

attenuation is clearly seen near critical and intromission angles.
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What happens if the attenuation is very large? Is the reflection coeffici-

ent then going to be very small? In such a case, we have v > 1 and nn2 - k2/k2 -

n' 2 (1 + iV)2 = n'2 (1 + 2iv - V2). Inserting this into equation (4-1) and dividing

both nominator and denominator by V, we obtain:

a cos e
R c n 2 (1/v 2 _ 1 + 2i/v) - sin 2 81V

a cos 6 + ,n, 2 (1/v 2 - 1 + 2i/v) - sin 2 8/v
V

which for v-= gives R - -1.

In other words the reflection is total with a 1800 phase shift, when the

attenuation is high in the bottom. In optics, the analog is the reflection of

light from a metallic surface, the mirror--but who notices in the morning that

you are phase-shifted 1800.

I

I
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CHAPTER 6

GENERAL LAYERING

So far we have only looked at the most simple bottom model, the liquid half-

space. When inspecting core samples taken from the ocean floor, a large majority

of them show a marked layering, very often alternating between harder and softer

sediments., In this chapter we will therefore study the reflectivity from the

most general type of ocean bottom, one consisting of several parallel sediment

layers, each supporting both compressional and shear waves and including attenua-

tion of both wave types.

Figure 6-1 illustrates our model for calculating the reflection coefficient

for a plane wave incident from a fluid half-space onto a semi-infinite medium

consisting of n parallel homogeneous and isotropic layers on top of a half-space.

909

0

2 d2

3

3

4

n-1

n-1

n
z

Figure 6-1. Layer Geometry

L 
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For a wave with the angle of incidence f in the fluid half-space, the two

angles in the mt layer corresponding to compressional and shear waves will be

determined by Snell's Law in the following way:

ao am BM C-- =-- = C (6-1)
sin 80 sinm sin )7m

where c is the horizontal phase velocity.

From the relationship between wavenumber and velocity,

w= ko ao = km am = Km Pm

equation (6-1) can also be written as follows:

ko sin 8o = km sin Om =Km sin Ym = h

where h = w/c is the horizontal wavenumber, and k and K are the normal wavenum-

bers in the m tlayer for the compressional and shear waves.

In this case we will need the potentials for both the compressional and

shear waves. Using the form g(z) "ei(hx-wt) for the potentials and inserting it

into the wave equations from chapter 2, a solution for the m th layer can be

written as:

om = [Am e ik  cos 8- z + Bm e ik , COS 8 z] ei(hx - wt)

om= [Cm e"i" COS 1' z + Dm eK CO 7 I] e(hx - wt)

The four constants are to be determined from the boundary conditions, which are

continuity in stress and displacement, or more conveniently as continuity in par-

ticle velocity. By differentiating equation (2-3) with respect to time and com-

bining this result and equation (2-4) with the expressions for the two potentials

above, we get the following matrix form in which the quantities of interest are

expressed by the four constants Am, Bin, C. and Din.

24
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6/c t= " t12  t13  t14  A, + Bm

NU/C t2i t22  t23  t24  Am Bm

o" t31  t32  t33  t34  Cm Dm,

TJ t4l t42  t4 3  t4 Cm + Dm

or, using the more convenient matrix notation,

Omitting the common factor e (hx" t), the elements in Tare:

ti, = -(am/c) 2 cos a, h • z

t12 = i(am/c) 2 sin a. h • z

t13 
= -Ym b. COS b. h • z

t14 = i ym b. sin b. h •z

tl = i (,/c )2 am sin am h • z

t22 = -(a )2/ac) cos am h - z

t23 =iym sin bm h z

t24 = ym COS bm h z

t3l=pm am (yn, 1) cos am h • z

t32 = ipm a (yn -1) sin am h • z

t33 = -pm C2 Y bm COS bm h Z

2 2  
*L .t34=ipmC YM m sin b,hz

2
t4 m = a-i pmamy am sin am h *z

t42 = pm am yn, am cos an h , z
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t4 3 = im C2 y (yin - 1) sin bm h Z

t, m = -PM C2 ym (y- 1) COS bm h Z

where am = cot Om and bm = Cot 17m

and ym = 2 (/3m/C) 2

So for a system of n layers, we get 4.n equations plus one for the water-

column and two for the limiting half-space, to determine the 4.n + 3 unknown

constants. Since we are mainly interested in the calculation of the reflection

coefficient, we will not try to solve the equations directly, but use a method

based on transfer matrices due to W.T. Thompson and later modified by N.A.
(31, E41

Haskell.

Placing the origin of the z-axis at the(m - 1)"'interface, we get for z - 0

and Z = dm

Sm-1 = Tm [0] Pm

and (6-2)

Sm = Tm [dm] Pm

where dm is the thickness of the layer and in which indices for § refer to the

interface and indices for T and P refer to the layer.

By eliminating Pm from the two equations, we get a relation between the

value of velocity and stress at the top and bottom of the m layer:

(6-3)

S. Tm [dm] [0 1-' Sm-

or

Sm Am Sm-I
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The elements of An can be found after some simple but quite lengthy calculations.

A,, y, COS P. -(y, - 1) COS On

A12 =i(,- 1) sin PN/a, + y. b, sin On]

A13 =-(COS P,~ - COS Qn)/P. C 2

A14 =i(sin PN/a, + b. sin Q.)/p, c 2

A 1 = [iyn a, sin P, + (y, - 1) sin Q./b,]

A22  -1 COS Pn + Yn COS On0

A23 =i(an sin Pn + sin Qn/b,)/p,, C2

A24 =A13

A31 =n PiC 2 Y. (Yn - 1) (COS Pn - COS Qn)

A32 =ipn C2 I(yn - )2sin PN/an + n~ bn sin Qn]

A33 =A22, A34 =A12

A41 =iPn C2 [y, a, sin Pn + (Y. 1)2 sin Q,/br,]

A42 = A31

A43 =A 21

A44 =A,,

where

an=cot 19n, bn Cot 17n, Yn =2(I3n/C )2,

P=ah dn and On~ = b. h -d

The elements Vii of the half-space matrix Trol-lare:

Vii = 2(jflm/am )2

V13 : ( Pm am)
27
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V22  c2 (ym - 1)/am am

V24 =(pm am am)-

V31 = (Pm- 1)/ym" bm

V33 = -( Pm C2 ym bm) - 1

V42 = 1

V 44 = (PM C2 Ym)- 1

V12 =V 14 = V21 =V 23 =V 32  V34  V41  V43  0

To take the attenuation in the layer into account, we will use complex

wavenumbers as before. Ignoring the attenuation in the water means that both k,

h and c are real, but from Snell's Law we see that the wavenumber, velocities

and angles of incidence will be complex in a layer with attenuation, which again

means that the elements in A are complex.

From the conditions of continuity and successive use of equation (6-3) 0

S.-, = A.-, • A.-2 ... Ao -So

and from equation (6-2)

(6-4)Pn = T. [01-' AI - An-2 ... Ao.- So (-)"

where P., represents the potential in the lower half-space, T[0]-' the acoustic

properties of the half-space, An-1 ... Ao the acoustic properties of the layering,

and So the upper boundary condition. In the two half-spaces 0 and n, certain

conditions have to be met. No shear stresses or shear waves can exist in the

fluid, which means that

T = Co = Do = 0

For the solid half-space to ensure a limited potential for Z- + o

I .

28
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Inserting the above-given values into equation (6-4)

An = hi h12  hi3  h, 4  /c

A, I h21 h22  h23  h24  w/c

C, h3i h32  h33  h 34  or

C. Lh41  h42  h43  h4 o

where the matrix H T. [0]-1 " A7-1 ... Ao.

EliminatingAn , C. and U/C gives:

(h, 3 - h23)(h 3 - h4,) - (h 33 - h43)(h,1 - h2,)
IkI/C = (h12 - h22)(h 3l - h 41) - (hil - h21)(h 32 - h42) a

or from the definition of the bottom impedance as-a/W, we get:

Zb (h12 - h22 )(h3 , - h4,) - (hi, - h2 )(h32 - h42 )

C " (h13 - h 23 )(h 3 1 - h4,) - (h33 - h4 )(hii - h2 l)

and for the reflection coefficient

R- Zb - Z
Zb+Z

where Z is the water impedance.

Because of the complexity of the equations, they are not well suited for an

analytical study except for some simple cases, which will be presented in the

following chapters. For a more general purpose, the above equations have been

programmed for an IBM - XT in Microsoft FORTRAN as described in appendix A.

S
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CHAPTER 7

SOLID HALF-SPACE

With only the half-space and no layers present, n - 1 and the H matrix

becomes P= [0]-' . Inserting the values for t, , we get for the bottom

impedance: C2 (y, 2 )2

a,Z aab, +2 (1,/aiZb = 1
2(, -1) +2 (8,1/,) 2

Pi a2 y1 b p1 c yi bi

which is not a convenient expression for analytically studying the reflection

coefficient. Using the different relations between the angles 8 and R7 and c, the
[51

bottom impedance as shown by Brekhovskikh becomes:

Z p = a, cos 2 2i, + • sin 2 2,1
Cos 8, COS 7,

Using Snell's Law with the relative wave velocities, we have:

sin 8 sin 8, sin,

1 a,

showing the possibility for two critical angles determined by

8a, = Arc sin (1/a,)

8fc, = Arc sin (1/8,)

respectively for compressional and shear waves.

In the following, we will study three different cases depending on the

values of al and A1 :

a) a, > 1 >3, One critical angle

b) a, >/, > 1 Two critical angles

c) a, > A, > 1.09 Rayleigh interface waves
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ONE CRITICAL ANGLE a, > 1 > 1

This is the most common case when we are dealing with a bottom consisting of

consolidated sediments as often found in shallow water. Figure 7-1 illustrates

the loss and phase shift when a, - 1.13, 01 - 0.4 and Pi = 2.0. Two values for

the attenuation are used, 0 and 1 dB/A . The values for no shear are also shown

for comparison. Clearly, the presence of shear waves "softens" the bottom, due

to energy being carried away from the interface by them.

ANGLE OF INCIDENCE

0 30 60 90
0 .180

/ 150

BBo 120O

NO-90U-C10

S R 60 cn

TWO CRITICAL ANGLES I > /31 > 1

This is the case when we are looking of reflection from a sedimentary rock

half-space. Figure 7-2 diagrams the reflection loss and phase shift for the

following acoustic values: ai - 1.87, /3 - 1.07, Pli 2.2, again with 0 and 1

dB/ attenuation for both waves.
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ANGLE OF INCIDENCE
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0- 180
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O .~ ,90 u.
1-0 1 Cl,

- 0 dB/A ATTENUATION / .. O
-- 1 dB/A 60 U

w <

15 -30 C

_10.0

Figure 7-2. Reflection Loss for a Half-Space with Two Critical Angles

As the grazing angle diminishes and we reach the critical angle arc sin

(1/al), the reflection will be total, but only at this angle when no attenua-

tion is present. For angles between the two critical angles, the reflection

coefficient will be less than one, since the shear waves will be carrying energy

away from the boundary. In this interval, the bottom impedance is complex, and

when the imaginary part is zero, the phase shift is also zero. This corresponds

to Cos 2 )I - 0 which gives ?71 - 450 and from Snell's Law, B = arc sin

2 ) 41.36* in our case. From differentiation with respect to 1), this

value also corresponds to a minimum as seen in figure 7-2. Only after the last

critical angle arc sin (l//I) - 69.20 or 20.80 grazing has been reached, can

total reflection occur.

RAYLEIGH INTERFACE WAVES a, > >1.09

This case is not a typical situation, but it is interesting, being related

to the propagation of Rayleigh interface waves. Figure 7-3 shows the reflection
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loss and phase shift for the following bottom parameters: ai - 3.48, J61 - 2.0,

Pi-2.5 with no attenuation included to enhance the shape of the curves. The

phase shift curve again has the minimum for 8 - 20.7050; it also has a jump from

+1800 to -180* for 8 - 32.920. The Rayleigh wave velocity for a half-space with

the above constants can be shown to be VR - 0.920" 01- 1.840, which turns out

to be equal to the horizontal phase velocity c - 1/ sin( 32.92 ) - 1.840. This

value can be shown to correspond to a pole in the complex reflection

coefficient.

ANGLE OF INCIDENCE

0 10 20 30 40 50 60 70 80 90
0, 1800

,) -50Cl 5 °
IU..I,, .

Z 2  16 17 1819202, 2--3 24
O------ 00

WWM 3- /
LL

w /

I I 04 -I

~1800

Figure 7-3. Reflection Loss for a Solid Half-Space Supporting Rayleigh Waves
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CHAPTER 8

LIQUID LAYERS

Before looking at some examples for layers with both compressional and

shear waves, let us consider a bottom consisting of unconsolidated sediments

which acoustically can be considered liquid due to the very low shear modulus.

We will study this type of layering in more detail since some of the results we

will obtain are useful for the understanding of several reflection processes.

In this case y = 2(3/C) = 0 and no shear potentials exist so the boundary 0

conditions are reduced to the requirement of continuity of only o and W across

an interface. The 4 x 4 T matrix reduces to a 2 x 2 matrix and we obtain along

the same lines as in chapter 6:

Using the appropriate values for tij from chapter 6, we get the following for 0

the n S
M layer: 

r

tm (am /c) am" sin Pm -(am /C) am COS Pml
[ Pm a .r COS Pm -i pmr " -" sin Pm J

where Pm am h " d is the pha-se- -shift through layer m.

]

01 1pm •amJ,.,

Tm [01-1 [-1/(am /c) 2 am 0/m

T,-0-':,!

which with A [d][O]' gives:

1[ Pm m COpmm 2am 0 -1 sin
i pm am sin Pm cos Pm
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For the total number of layers:

Sn-1 = A-"An-2 ...A1 "So=ASo

which is the matrix equation relating the boundary conditions at the bottom and

the top of the layering. Or:

- -- - . -

[= 0]-  h -AS=HS

which with [h11  h 2  [ and Zb = -/W gives: Zb -

[A h21  h2 C (h12 - h 22)

and reflection coefficient R = (Zb - Z)/(Zb + Z) Let us now consider some

simple and illustrative cases.

The Bottom Consisting of a Half-Space

With no layers present, H T[0] - ' and we have:

hil = h22 = 0, h12 = 1/p, a, and h2 = -1/(ac) 2  a, , so that

Zb = a, p/cos 8,

agreeing with the previous results.

The Bottom Consisting of a Single Layer over a Half-Space

In this case, we get for the H matrix:

0 1/p 2 a] [ cos P1  ia, (p. c2 )- sin P,
H= -1/(2/C)2 a2 0 i p C2 a; sin P, COS P,
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with the index 1 and index 2 referring respectively to the layer and the half-

space.
0

After some lengthy calculations and setting Zi a, pi/COS 81 and Z2 a2 P2/

COS 82, the total bottom impedance becomes:

Z2 COS P, + i zi sin P,
Zb=

COS P, + i z2/z, sin P1

and the reflection coefficient becomes:

R = zz2(Z2 - z) + i(z, -- ) tan P
Zi

Z+ Z) + i(zi+ -Z2) tan P1Zi

where Z is the impedance of the water.

Contrary to the simple half-space solution, the reflection coefficient is

an oscillating function of PI, which can be written as Pi- 27 (di/A,) cos 01. For

vertical incidence, two special cases exist, one corresponding to a layer thick-

ness equal to a number of integer half-wavelengths and one corresponding to an

odd number of quarter-wavelengths.

If P - m Tfor m - 1, 2, 3..., sin P - 0 and we get:

R = (Z2 - z)/(z2 + z),

meaning that a half-wave layer has no influence on the reflectivity which is

being controlled only by the half-space. This could also be seen from the A

matrix for a layer, which, for sin P = 0 and cos P - 1, reduces to the unit

matrix, meaning that such layers have no influence on the total reflection

coefficient.

If P m T/2 for m =, 3, 5,..., cos P =0 and sin P =I and we get:
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R (Z= - + Z2.Z)

Therefore, if Z, = V'T, no reflection takes place. This particular case

is very frequently utilized in optics where quarter-wave coatings are used to

increase the transmitted light in, for example, lens systems.

To illustrate how the loss depends on the frequency and the angle of

incidence, we will study the case with the acoustic constants as given in table

8-1.

Table 8-1. Bottom Acoustic Constants for a Two-Layer Model

ALPHA BETA RHO AA AB DEPTH

.970 .000 1.450 .100 .000 1.000
1.050 .000 1.850 .300 .000

where AA and AB are the attenuations in dB per wavelength.

The losses are shown in figures 8-1 and 8-2 for 150 and 600 angles of

incidence, respectively. Note that the interference pattern clearly corresponds

to quarter- and half-wavelengths in the layer with minimum losses equal to the

case where only the half-space was present. As the angle of incidence increases,

there is a shift toward higher frequencies due to the cos 8 term for the phase

shift in the layer.

The formula for the reflection coefficient can be rewritten using the two

local reflection coefficients at the two interfaces 0 and 1, with r01 
= (Z- Z)/

(ZI + Z) and r 12 
= (Z 2 - Z1)/(Z2 + ZI):

ro, + r12" e-21k,d,

~1 +r 12 e "2 k

+ r 12 roe 2 kd

38
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Figure 8-1. Reflection Loss and Phase Shift as a Function of Frequency
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an expression attributed to the famous astronomer G.B. Airy in 1833. This

result can also easily be obtained by the following considerations. Looking at

the ray paths in the layering as seen in figure 8-3, we can write the total

reflection coefficient as:

R =ro +to •r 1 2 "tio e - 2ikd +to1 •rl2 rlo"rl 2 "tio e - 4ik, 'd +to1 •r 2 " ro.rl2 " rio.r 1 2 "e -Sik' d, +...

R rol + to, •r 2 to (1 + ro •r1e2 ik+ 0. "r2 .2e- 4 ik d + •.)

R roi + to, r2 • to• e -2 kd, • 1
1 - r 1 2 • e

with e-i2kdI being the phase shift for a double passage through the layer.

Figure 8-3. Ray Paths in Layers

Rearranging using r,1 - -r,, and ti 1 + ri,, , the above reduces to the

Airy expression which is very useful and can be applied recursively to calculate

the reflection coefficient from a multilayered medium. We will later use it to

study some special cases, such as a density gradient in a layer and reflection

close to grazing.

For weakly reflecting layers, the local reflection coefficients are small

compared to unity and we can ignore second order terms. Thus, the reflection

coefficient can be written in the simple form:

R = ro + r1 2 * e'2 0,
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a formula well suited for recursive calculation in the case of multilayers. This

approximation corresponds to the graphical polygon technique used in optics

before the days of computers by calculating the reflection coefficient using 0

vector addition of the local reflection coefficients for a set of layers. Though

this method is now obsolete, it is quite illustrative and we will use it for the

three-layer model given in table 8-2 and construct the reflection coefficient

for 0, 150, and 300 Hz at vertical incidence.

Table 8-2. Bottom Acoustic Constants for a Three-Layer Model 0

ALPHA BETA RHO AA AB DEPTH

1.050 .000 1.890 .000 .000 1.000
1.130 .000 2.050 .000 .000 1.500
1.870 .000 2.200 .000 .000

From the two reflection coefficients, we get:

R r0, + Ri" ei201

Ri = r12 + r23 " ei202

as a function of the local reflection coefficients and the phase shift in the

two layers. From the impedances, these are easily computed:

r01 = 0.332
r12 = 0.075
r23 = 0.279

In the following we will give the reflection coefficient and phase shift

obtained (1) graphically (signified by "graph") from figure 8-4, numerically

('numo), and exactly ("exactw) using transfer matrices.

4
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a) f-0 Hz

In this case, O- 0 and the local reflection coefficients are on the

same line as seen in figure 8-4. Computing the equation graphically, numeri-

cally, and exactly, we get:

R = 0.332 + 0.075 + 0.279 = 0.69 (graph)
R = 0.686 (num)
R = 0.609 (exact)

b) f - 150 Hz

The two phase shifts in degrees are:

i = 360 " 0.1 1.0/1.055 = 34.120
2 = 360 • 0.1 1.5/1.13 = 47.790

Results obtained are:

R = 0.18 and 0 = -580 (graph)
R = 0.178 and 0 = -55.90 (num)
R = 0.194 and 0 = -55.990 (exact)

c) f - 300 Hz

The two phase shifts are obtained as above, yielding

I = 128.480
0 = 191.160

From the vector addition, we have:

R = 0.51 and 130 (graph)
R = 0.510 and p = 13.80 (num)
R = 0.494 and 0 = 8.840 (exact)

The accuracy of the approximate method, whether graphical or numerical, for

the above cases can be considered to be quite satisfactory for the interference

effects from the different layers.
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R 0.f=Hz

0.6
r23 f 300 Hz

-0.5

0.686

"0.4 f 150 Hz r23

0 .3 r 2

R = 0.51

0.2ro ro

0.1

R1 580 130

Figure 8-4. Vector Addition of Reflection Coefficients

Now let us look at the phase shift as a function of frequency and impedance

for this simple two-layer liquid bottom. The phase shift is determined as

Im[R]
tan -Re[R]

where ImtRl and Re[R] are the imaginary and real parts of the reflection coeffi-

cient. Inserting these values and setting the phase shift in the layer 2 ki d=

, the phase shift for the reflection becomes:

r12 (rgl - 1) sin
tan t L, ro (r12 + 1) + r12 (ro2 +1) cos (

We will discuss some different cases according to the relative magnitude of

the two local reflection coefficients, r01 and r12 , and assume that the angle

43



TD 8129

of incidence is less than critical and that the reflection coefficients are

small compared to 1 so we can ignore higher order terms. The expression for the

phase shift can then be rewritten as:

-sin
tan - ro/r,2 + cos

a) r12 > roI

This corresponds to a weak reflector on top of a stronger reflecting half-

space. The phase shift becomes:

tan , -tan tA

and

S- =-2k, cos 8e di or

2d, cos

a,

which is a linear phase shift corresponding to a simple time delay as one would

expect.

b) ro, = r12

In this case the phase shift is

sin
tan + COS 4P

-0/2

again a linear phase behaviour with respect to frequency but with only half the

slope or time delay as compared to the case above.

Figures 8-5 and 8-6 show the phase shifts calculated from the transfer

matrices and clearly demonstrate the near-linear dependence. This is also very

often the situation observed from experiments, even when we are dealing with a

complicated multilayered bottom as seen from figures 16-3 and 16-4 in chapter 16.
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Figure 8-5. Phase Shift for ai-o.96, a2-1.03, pi-1.35, P2-1.7
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CHAPTER 9

HIGH LOSS AT GRAZING

It is frequently believed that with a bottom for which a critical angle

exists and for small grazing angles, reflection will always be close to perfect,

with no or very little loss. Although this can be true, there are situations

where the reflection coefficient behaves differently.

The sea floor under consideration is a soft, low-velocity layer on top of a

harder, high-velocity half-space as indicated in figure 9-1. With a2> 1 >aj and

ro, and r12 (the local Rayleigh reflection coefficients), we have an intromission

angle case for rol and a critical angle case for r12 . Further, we will consider

the case where 8 is small and 8 < arc cos (1a2) , in other words the reflection

from interface 1-2 is total.

@WATER

MUD 1.3

a2 P2
SAND

Figure 9-1. Layering Geometry

Using the Airy expression from the previous chapter for the reflection coeffi-

cient for the complete layering and in this case the more convenient grazing

angle instead of the angle of incidence, we get:
r0, + r12 • 0R (8, k) =(9-1)

1 + ro, • r12 • 0
where 2kd. sin / is the geometrical phase shift through the layer, with k

being the wavenumber. We will study this expression in more detail for 8 0

- -T S, , 47
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From Snell's Law, we have

os9 -

cos p a,

p arc cos (a, -cos9)

dip a, sin90

which for 8-0 gives d/ 0.

This means pi will vary little with 8 for 8 close to zero, and we will consider

it constant and equal to /Jo.

For small grazing angles, as discussed in chapter 4, the local reflection

coefficient is expressed by exponential functions:

ro -e-00
r12 -es=

with

0 (9-2)

V2p-/ -1

For a2> 1> a, , Q is real and positive and S' is imaginary and negative:

2 P2/PI i

and (9-3)

R23 =-''

Inserting equations (9-2) and (9-3) into equation (9-1), we get:

R (8, k) - eoe + lpIT.eo

or

-e0 a + e(Su-ir2dksinj)
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which for 6- 0 and j - MJO gives

1 e i S/io- Yr+2 d k 's inp )

R(k) = - - -1
'"0 e1 - e iS uo- Yr+2dks inMo)

as expected: total reflection with a 1800 phase shift.

But when eiS -j o- +2dk-sio) 1 (9-4)

we have a singularity with R for 8 - 0.
0

From physical reasons, we know that IRI < 1 and we can, therefore, expect R

to have a minimum. This can also be shown by numerical calculations since the

work involved in the analytical study of R(k) at this singularity is very

tedious.

From equation (9-4), we find

S po - 7Tr + 2dk sin po 2n- v, n = 0, 1, 2....

and with k = 2v/TA

d n (2n + 1)v - Spo (9-)
M n 47r sin po

For these values the reflection coefficient will be very small, even very close

to grazing. Figure 9-2 shows the reflection loss as a function of 0 and d/A for

the layering used in the previous chapter.

4
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n 0 n 1 n =2

5 .I

0

z 10._ _ _ __ _I

n 1 2.55 d/AI

cc a, =0.97 P, 1.45

a2 =-1.05 P2 =1.85
20

0 1 2 3 4 5

Figure 9-2. Reflection Loss as a Function of wavelength

for 10 and 20 Grazing Angles

Using the above parameters at equation (9-5), we can then calculate the d/AI

values for which high losses are expected:

WdA), (2n + 1) vT - 1.637
3.055

This yields

0.49 n =0
d /A= 2.55 n =1

L4.61 n =2

One should note that the value of d/A - 0.49, close to 1/2, is a coinci-

dence and that dIA values increase with increasing hardness of the lowest layer,

with d/A approaching 0.8 for n - 0 in the case of a very hard layer.
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These high-loss d/A values are shown in figure 9-2 as arrows and agree very

well with those calculated numerically from equation (9-1) at 10 and 20

grazing. To indicate how the loss varies with grazing angles for different d/A

values, figure 9-3 shows the losses for the same case with d/A - 0, 0.5, 2, and

oo, the first and last corresponding to only the high-velocity half-space and a

half-space with the characteristics of the upper layer. Note the extremely small

angle for which a high loss is obtained for d/A 0.5.

01
" -

5 0

HIGH VELOCITY LAYER.
...10 - . -------- -... /. :

'.,... -,. /i i,

Z 15 LOW VELOCITY LAYER ojii

00
25-

w

GRAZING ANGLE (degrees)

Figure 9-3. Reflection Loss as a Function of Grazing Angle

How can we explain these reflection loss anomalies for discrete d/A values?

Let us look at the waves being reflected inside the first layer, as seen in

figure 9-4.
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e8o = LAYER

I A LAYER0

B LAYER (

Figure 9-4. Wave Path in the Bottom Layer

When 6- 0, the local reflection coefficient r10 = 1 with a zero-degree

phase shift, since we have a plane wave coming from medium 1 being reflected

from the higher medium 0, where /J0 is in fact the critical angle. Writing the

equation for conditions under which the wave fronts interfere constructively in

layer 1, we get:

(AB + BC) • k + 0, + /'2  2 • 7'. n,

where i and 1#2 are the phase shifts at the two interfaces. From the above, il= 0

and 02 = S IJO - Ir, AB + BC is easily expressed by d, and /J0 as:

AB + BC = 2d sin Po or (9-6)

Spo + 2dk sin /1o - r = 2vn,

which is exactly the same criterion for the singularities in the reflection

coefficient.

This means that we are dealing with the propagation of trapped modes in the

top layer and their characteristic equation is equation (9-6). With just a

small amount of attenuation in the layer, it absorbs most of the incident energy

and thereby creates a low reflection coefficient just close to grazing.
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In shallow water sound propagation, one can also show that these singular

frequencies correspond to similar singularities in the frequency-dependent

transmission loss.

Figure 9-5 illustrates the relative sound speed and density measured on a

core taken on the Italian continental shelf. Using these acoustic parameters

with a water sound speed of 1500 m/s and the layer depth d - 3.7 m, we find from

equation (9-5) that high losses near grazing are expected for:

f - 200 Bz,

f - 1050 Hz,
f - 1900 Hz,
f - 2700 Hz,

which are within the frequency ranges for both active and passive sonar systems.

1.8

1.4

c 1.2

0.9

Q.'

0 1.2 35

Ca
LU

1.2

CORE LENGTH (m)

Figure 9-5. Sea Floor Characteristics

As a further illustration, the transmission losses for iso-velocity condi-

tions at a range of 35 km and for a water depth of 115 m with bottom character-
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istics corresponding to the above core have been calculated. Figure 9-6 very

markedly shows the effect on shallow-water transmission.

* HIGH TRANSMISSION LOSS SOURCE DEPTH 50m
60 PREDICTED FROM THEORY RECEIVER DEPTH 50m

COF REFLECTIVITY
V

80 
0
-j

z
o 1oo -, 200HZ*

f=1 050 Hz
f3 u 1OSOHz

z 120 f,=2700Hz

140
50 100 200 400 800 1600 3200

FREQUENCY (Hz)

Figure 9-6. Transmission Loss as a Function of Frequency
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CHAPTER 10

DENSITY GRADIENT
S

Again turning to what can be observed in nature, one will notice that for

unconsolidated bottoms consisting of clay and silt, the analysis of cores can

show a more or less constant wave velocity in the upper meters, whereas density

clearly increases with depth. Let us look at one possible explanation for this.

In chapter 4, we were looking at the rather unusual case of bottom consist-
0

ing of a mixture of gas bubbles, water and solid. We will now look at the very

coummon case where there are no free gas bubbles present and we can treat the

sediment as an ideal two-component mixture. The equations for the relative

density and velocity from chapter 4 can be rewritten as:

Psed/Pwater Psoid/pwater (1 - n) + n

and

11
s/awate (1-n)+n

where n is the porosity.

Using Psolid/Pwator = 2.62 and Bsoiid/Bwater 0.0455, the values of Psediment/Pwatr and

aGediment/awst., have been calculated. Figure 10-1 shows the relative sound velocity

and density for a two-component sediment as a function of porosity, with the

velocity exhibiting a wide minimum around a porosity of about 75 percent, p

whereas the density increases linearly with decreasing porosity.

Measurements on several thousand core samples indicate that our assumptions

can be considered valid. We will frequently use this relationship between

porosity, density, and velocity, known as the Woods equation. In situ, values

for porosity usually range from 35 percent for coarse sands to 65 percent for

silts and 85 percent for clays, as discussed in appendix C.
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w
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0
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POROSITY

Figure 10-1. Relation between Density/Velocity and Porosity

Therefore, if we have a sediment with a porosity near 75 percent, a

decrease in porosity with increasing depth would change the relative velocity

very little. However, the density would increase with depth, thereby creating

density gradient, as seen from figure 10-2, which is representative for several

cores taken in the Alboran Abyssal Plain to the east of Gibraltar.
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- 1.6 •
W W 1.5-
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o 70 ,1.1.

z 1.020",
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..W 0.960--

0.940., . ,0 200 cm 400

Figure 10-2. Example of Relative Density, Wave Velocity, and Porosity

The relative velocity is approximately 0.975 and we have a type of intro-

mission angle reflection, in this case, with a frequency-dependent reflection ?
S

coefficient due to the clearly seen density gradient.

To calculate the reflection coefficient, let us approximate the continuous

density gradient with finite density steps, creating a layering system as seen

in figure 10-3.
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a L

PI

Figure 10-3. Approximation of Density Gradient

Using the Airy formula for the reflection coefficient from the n layer

expressed by the local reflection coefficients, we have:

d L/rN-6 + RI

1 + rn-1 •R i

where :

rn- 1  is the local reflection coefficient, depending on the density and wave

velocity on each side of the n-o interface,

R U is the reflection coefficient from all the layers below interface n,

express the reflection coefficient for all layers below interface n-l, and

0is the two-way phase shift equal for all layers.

The formula can be used recursively but is not very convenient for our

purpose. However, by selecting very thin layers and assuming that 1 > , and

Th1 , we can as before use the much more convenient approximation:
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=rn-i + Rn e'O

which physically means that we are ignoring multiple reflections. Starting the

calculations at the lowest interface N, we get:

RN =r

RN-I = rN-1 + RN ei

Rn1 rn-1 +R R i.

Ri ri + R2  i
Ro=ra + R1  i

or

Ro =ro + riei + r 2 ei2 0 + .rN e NO

With rn =Pn+1 Pn = P2 -P1

Pn+i + Pn N (pn+i + Pn)

rn P2 - Pi
N (P2 + Pi)

Ro =ro +rn e1O 1 +"0'+. .+ e(N-1)0]

Applying the formula for a sum for geometrical series, we obtain for the

reflection coefficient:

e io (P2 - PI) eiNO - 1
Ro ro + N(P+PO & -1

and 2 - i-d -O 9o , with k being the wavenumber and 0 the angle of inci-

dence equal for all the thin layers. Using Snell's Law, this reduces to:

~2 - ko/a, -x1 -al sin 2 L0N

which is real for all angles of incidence.
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Letting N- 00 and d - 0 , the density profile will approach a linear one

and, after some calculations, we arrive at the following expression for the

reflection coefficient for a layer with a density gradient:

P2 - P1
Ro = r0  0 (P2 + P (sin 0o + i(1 - cos 0o))

~a2 2P +i)wihL 1 • V1 -a •nsio.
with Oo = 4r. -- • i--

A0  a

To see how the gradient affects the reflection coefficient, we will use the

values from figure 10-2 which gives:

a, = 0.975, Pi = 1.4 and/p1 = 1.5.

Figure 10-4 shows the reflection losses for selected angles of incidence and as

function of dimensionless wavelength.

9
............ 8 5 0

15 dB

j , 400

-. 600 -
LL
u:19

DENSITY STEP--, 
650

dB\

\ ,L
0.02 0.05 0.1 0.2 0.5 1.0 1.2 1.5 10 -

Figure 10-4. Reflection Loss in the Presence of a Density Gradient
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The curves show the usual A/4 and A/2 oscillations, but being damped with

increasing frequency, approaching an asymptotic loss value. The reason for this

can be understood from the fact that, for long wavelengths/low frequencies, the

gradient has little effect, whereas for shorter wavelengths/higher frequencies

only the water-sediment interface affects the reflection coefficient. For com-

parison, figure 10-4 also shows the losses at 60o for the case with no gradient

but with a single layer with a density of 1.4 and a half-space with a density of

1.5, showing the smoothing effect of the density gradient. S
S

61/62
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CHAPTER 11

EXAMPLES OF GENERAL LAYERING

When dealing with general multilayered bottoms, it is not possible analyti-

cally as in the past to study the behavior of the reflection coefficient as a

function of angle of incidence and frequency. Therefore, we will use the trans-

fer matrix method as described in chapter 6 to calculate numerically the reflec-

tion losses using three different bottom models with the acoustic parameters as

given in table 11-1, with AA and AB being the attenuation of compressional and

shear waves. In Model C, the density and compressional wave velocity are

related to porosity through the Woods equation.

Table 11-1. Bottom Acoustic Constants for Three Models

AA AB

MODEL a 6 dB/A dB/A p d

A 1.0 0 0 0 1.0 - Water
1.055 0.26 1.0 1.5 1.89 1.0 45% Porosity
1.13 0.40 1.5 2.5 2.05 - 35% Porosity

B 1.0 0 0 0 1.0 - Water
1.055 0.26 1.0 1.5 1.89 1.0 45% Porosity
1.13 0.40 1.5 2.5 2.05 1.5 35% Porosity
1.87 1.07 0.5 0.75 2.2 - Limestone

C 1.0 0 0 0 0 - Water
Varying as function of porosity 1.0

1.13 0.40 1.5 2.5 2.05 - 35% Porosity

To give an overall image of the reflection loss as a function of angle of

incidence and frequency, the reflection loss isolines were plotted in the

angle of incidence-dimensionless wavenumber plane. Let us look at the results

from the individual models.
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MODELS A AND B

The reflection loss was calculated for three models, as given in table

11-1. For Model A, the reflection loss was also calculated for cases without

shear waves or without attenuation. The results of the computations are shown

in figures 11-1 to 11-4.

Several significant features are noticeable. One is the system of valleys

and ridges originating at 0 degree incidence and being shifted toward higher

frequencies with increasing angles. These low and high losses correspond

respectively to half-wave and quarter-wave layer thicknesses. This means that

the extremes will be determined by: d Cos 8 = mr/4 .

At angles near the critical angle, the complexity increases and one often

finds large losses in this region. After the critical angle in the top layer,

the losses decrease quickly and show little frequency dependence. When com-

paring the losses for the case with and without shear waves, one will notice

that the shape of the isoloss contours is very much the same, but generally with

1 to 2 dB lower losses in the absence of shear as one would expect.

Comparing the losses with and without attenuation shows some interesting

features. The isoloss contours get much more irregular due to the unmasked

interference between the two types of waves. After the critical angle in the

deepest layer, the effect of the shear waves is clearly seen when the effective

thickness equals quarter-wavelengths.

MODEL C

In the section above, we looked at solid layers supporting shear waves.

From the cores taken at the SACLANTCEN, it seems that the porosity of the upper

layers of the deep sea bed is usually about 70 to 80 percent. It might

64
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Figure 11-2. Reflection' Loss in dB as a Function of the Angle of Incidence

and the wavenuinber -Model A, no Damping
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Figure 11-3. Reflection Loss in dB as a Function of the Angle of Incidence

and the Wavenumber -Model A, no Shear
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Figure 11-4. Reflection Loss in dB as a Function of the Angle of Incidence
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therefore be of interest to see how a low velocity layer on top of a more

consolidated sediment will affect the reflectivity. To obtain a general picture

of the reflection loss, this has been calculated for a porosity equal to 80

percent, at which the sediment sound velocity is minimum. The resulting iso-

loss curves are shown in figure 11-5 and the usual system of ridges and valleys

are noticeable. Two marked zones with very high losses are observed near

grazing and correspond to an extension of the quarter-wave valleys. These are

caused by the trapping of waves in the upper layer as already discussed in

chapter 9.

Figure 11-6 shows the reflection loss as a function of frequency and por-

osity for angles of incidence of 00, 600 and 800. The 100-percent porosity

case is included for completeness and corresponds to pure water.

6.
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CHAPTER 12

IMPULSE RESPONSE

In the preceding chapter, we have described the bottom by its complex

reflection coefficient R(w) for a given angle of incidence as a function of

frequency and treated it as a linear and time invariant system. Another way

to describe such a linear system is by the impulse response in the time

domain defined as the reflected signal for an incident delta function 6(t)

For the delta function, also called the Dirac pulse, there exists the Fourier

pair 6(t) <-> 1 . The impulse response h(t) is therefore determined by the

well known Fourier integral:

h(t) =2 f (t) e" dw (12-1)

In the case of a single half-space as reflector, the reflection coefficient can

be written as follows: S

F Ao'eo8°  >

R(,)

Ao e-'8° C < 0_

or, using the signm function sgn co , as:

R(.') = Ao • e i8° sgn Ao (cos 8o + i sin Oo sgn ov)

which inserted in equation (12-i), gives

h(t) = Ac [ cos 8o eciwt c',,J + sin 8o i sgn w e"wt dw]

From the Fourier pairs,

6(t) <->1

and

I1ir • t <-> -i sgn w

73
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we obtain:

h(t) = Ao- cos 0o 6 (t) - Ao s o

which is shown in figure 12-1.

h(t)

:A 0oCOS Go

Ao sin o , c

t "

3/," 21'- 1/ - /'7 2 312/--.

Figure 12-1. Impulse Response for a Half-Space Model

If there is no damping present, 8 will be zero for angles of incidence

less than the critical angle; hence, the impulse response is represented by the U

delta pulse at zero time. Only after the critical angle will there exist a

phase shift causing the hyperbolic term in the impulse response.

In the case of a general multilayered bottom, R(oj) is so complicated that

the Fourier integral has to be calculated numerically. This means that it is

necessary to truncate the integral at a frequency high enough for the remainder

to be ignored. But for Ws , there still exists a finite reflection loss, so
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any termination of the integral will cause a serious truncation error. To avoid

this difficulty we remove from the reflection coefficient function the asympto-

tic value that corresponds to the case where the upper layer is acting as a

half-space reflector:

R ()=R' (o) +T(w),

where

T (c) -0 for w - .

Thus, the impulse response can be written as:

h(t) = Re [R (06)] 6 (t) RT(4) ew" dw
7r t 7 0

where Re[ I and Im( ] are, respectively, the real and imaginary parts. The

last integral can now be calculated by truncating at Cwo, such that T (w) < <

In the case where no damping is present this procedure will not work, since

T (cu) will keep oscillating even for oj - cc and it will be necessary to use a

proper frequency window such as discussed later in chapter 14.

If 3ne is considering the situation where the angle of incidence is suffi-

ciently small such that no critical angle will occur in a layered bottom, the

impulse response can be obtained in the following way. Using the formula for

the reflection coefficient for a two-layer model obtained as a sum of single

reflections as given in chapter 8, we have:

R (c) r0 1 +-:

to, rl2 • t1o • e
-2ik' d, Cos 9, +

to1  r 12  n to e-4
1
k' d, cos 9, +

where 2 Ck di • Cos 61 = (2d, • COS 81/a) "c is the phase shift in the layer.

The Fourier inversion can now be made on each term. Using the following

pairs
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6 (t) <-> 1

f(t - to) <-> F(cj) e- i ,'t

with

f(t) <-> F(o)

the impulse response becomes:

h(t) = ro, 6(t) +

to -r 12 tIo6(t- 2d, cos8 1 )+

to 1 • r 12 ro r12 to 6 (t 4dcos

which is a sequence of delta pulses separated from each other by the travel time

2d, cos Oi/i,a result one would expect.

At this point it is also possible to get an idea of the influence of the

attenuation on a separate pulse by introducing the complex wavenumber

k' = k(1 - i-E) . The phase shift now becomes:

e-2ik; d, cos 8, = e-2ik, d, cos 6, e-2k, c d, cos C 91

e-t(2d, Cos 8,1a,)w e Cos 0, •/a,) •w

The Fourier transform is then carried out by the use of the pairs

f(t) <-> F()

F(t) <-> 2 • 7T. f(-co)

and

e-0 t' <-> 2/3/(13 + C)

resulting in, for example for the second pulse, the following form:

t tIo di cos 01 !l/a

• [4 (d, cos 0, • Ea) 2 + (t - 2d, cos 8 /a1 )2 1
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In this case it is not a delta pulse, but a smaller, *Gaussian-looking"

pulse that is obtained; thus, increased attenuation will decrease the peak
I

amplitude but widen the pulse. Had the attenuation in the water been taken into

account, the reflection from the first interface would not have been a perfect

delta pulse but a finite pulse like the reflection from the second interface.

To illustrate the technique, the impulse response has been calculated for

the same three-layer model (B), used in chapter 11, for 00, 400, 600 and 800

angles of incidence. The results are shown in figures 12-2 to 12-5.

Looking, for example, at figure 12-3, we notice the following reflections:

first, the delta pulse and the hyperbolic term from the surface, then the

Gaussian-looking pulse from the second interface. Because the critical angle

for the half-space is 32.30, the reflection from the third interface will

involve phase shift, which gives the pulse from this layer an inverted look.

The next pulse to be seen on the figure occurs at t -4.5 and is caused by the

reflection of the previous pulse from the first and second interfaces before

leaving this layer through the first interface. The pulse will have the same

polarity as the incident because of an additional reflection from the first

interface separating a higher impedance from a lower impedance. The fol-

lowing pulses are difficult to trace exactly due to the repeated influence on

the phase shift.

The impulse response is a very useful way of describing the reflectivity

and often is much easier to comprehend than the complex reflection coefficient

when trying to deduct the characteristics of the bottom layering.
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CHAPTER 13

PERIODIC LAYERS

Analysis of hundreds of sediment cores taken from both the Atlantic and the

Mediterranean shows that two distinct types of deep sea sediment are found. One

consists of rather homogeneous clay, which has been deposited slowly and con-

tinuously (so-called pelagic sediments). The other consists of layers of

clay mixed with sand or silt deposited suddenly by turbidity currents. Tur-

bidity sedimentation is a frequent type in the Mediterranean and in the Atlan-

tic. An inspection of the core sections very often indicates a clearly marked

systematic change between clay and sand, giving certain parts of the core a

periodic structure. It is of interest to study these conditions in more

detail, since we shall see that periodic layers of quarter-wave thickness

are one of the few cases where very high reflectivity exists over a finite

frequency band.

Let us start by rewriting the transfer matrix A for liquid layers to a form

more convenient for our purpose. From chapter 8, we have:

2 -

hci Pm c2 am sin Pm Cos P"' 1

which by the use of the values for c and a can be written as:

m -

with Zm Pm am

*OS8 81
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being the impedance for the m layer. It is easy to prove that the determinant

of this matrix is equal to unity, a fact due to the assumption of no attenuation

in the medium.

By relating the boundary condition vector for the lower half-space inter-

face and the layer-water interface through the new A matrices and by intro-

ducing Zn = -on/Wnv and Zo = -ro/ o as the impedances for the lower half-space

and the total layering respectively, we get after some calculations:

R (-a 21 + a22 Zn) - (a,, - a12 Zn) Zo

(-a2 + a22 zn) + (a,, - a12 zn) Zo

which expresses the reflection coefficient R by the half-space and water imped-

ances and by the coefficients aij for the layering (excluding half-space) product

matrix A.

Consider now a bottom built up of a succession of homogeneous sand and clay

layers with markedly different acoustic parameters causing an alternation

between higher and lower impedances. There will therefore be two types of A

matrices, A1 and A 2, one corresponding to sand and one to clay. The product

matrix for such a double layer is:

m= cos P 1 cos P2  - sin P, sin P2  i(--cos P, sin P, + cos P2 sin P1 )'
S in * 2 co 1 siZ, ?.,

i(Z, COS P2 sin P, + Z2 COS P1 sin P2) COS P, COS P2 -- sin P, sin P2

which is the transfer matrix for a single period (a double layer) in the

layering.

The transfer matrix for N equal double layers is then:

a -= M. N times
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Since A is unity, the elements in a can be expressed explicitly by the use of

Chebyshev polynomials in the following way:

a1, i m UN-i (x) - U.-2 (x)

a12 iM12 UN-i (X)

a21 in21 UN-i (x)

a22 iM22 UN-2 (x) - UN-2 (X),

th
where UN(X) is the Chebyshev polynomial of second kind and N degree. The 0

argument x is half of m's trace and equal to

Z2 iX~cosP, cosP2 -1 /( .i- + ,i-- ) sin P1 sin P2.

The first polynomials are U(x) = 1, U(x) 2x , and the higher orders can be

computed from the recurrence formula:

0
UN (X) 2x UN-I (X) - UN- 2 (X)

In the case where the acoustic thickness of the two layers are identical

(which corresponds to equal phase shifts), 0

PI = P2  P and • reduces to: %

m= cOsP-- sin P i(-- +Z, )cOsPsinP

, zi '

Li(Z1 + Z2 ) cos P sin P COS P -- sin
Z2 "

When P = 7T/2 (which is the case when the thickness of the simple layer equals a

quarter-wavelength), m reduces further to the simple and symmetrical form: A,

1 0

zilth
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and

a- [Z 2 )N 0

0 ~ (__I )N

Z2

The reflection coefficient is then, according to equation (13-1):

1 -_Z2 )2N Z0

R= Z Zn

+ Z2 2N Z

Z, Zn

This is valid only at a frequency corresponding to the quarter-wave criterion in

the original layers.

The analytical evaluation of R when the phase shift P is not equal to ir/2

leads to rather complicated expressions. The following cases have therefore

been computed numerically and the results given in graphical form using

a,(, = 1.05, aca = 0.95, P,,nd = 1.8 and pcay = 1.4.

Figure 13-1 shows the vertical losses for N = 1, 2, 3, 4, 6, 9 and 0 5 P < iTr with

P1 = P2 = P.

To avoid confusion between the different curves, only the high reflection

zone has been plotted at the highest values of N. we find a very characteris-

tic, almost frequency-independent, low loss around P = 7r/2. Outside this region

the losses are much higher and oscillate, with the number of oscillations

increasing with N.

When using z.e condition of periodicity, it can be shown that when N-

one can find a finite interval around P =iT/2 with zero loss and that the width

of this high-reflectance is twice the arcsine of the local reflection coeffi-

cient r (Zi - Z2 )/(ZI + Z2) between two single layers.
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Figure 13-1. Reflection Loss in dB as a Function of Phase Shift

for Different Numbers of Layers

The influence on the angle of incidence is investigated for the case N = 3

and with the single layers matched in phase for vertical incidence. The results 0

are given in figure 13-2. Apart from an expected shift of the high-reflectance

zone towards higher frequencies, we notice that both the width of the zone and

the reflectivity increase with an increasing angle of incidence.
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Figure 13-2. Reflection Loss in dB for N = 3 as a Function of Phase Shift

for Different Angles of Incidence

Until now we have only considered single layers of equal acoustic thickness

(same phase shift in both layers), a criterion that quite often is not exactly

met in nature. We shall now study the effect of three double layers that are

similar but not exactly matched. Figure 13-3 shows the minimum loss for the

first high- reflectance zone as a function of the ratio between acoustical

thicknesses.

86



TD 8129

di
2 3 4 5 6 7 8 d2

0- •

2-

6- N:3 S

Min. Loss
dB

LS

Figure 13-3. Minimum Reflection Loss in dB for N = 3 as a Function of

Different Ratios of Acoustic Thickness (Thickness of Double Layer Equal to A/2)

Prom the figure we notice a very important factor: even in the case of

unmatched layers, high-reflectance zones exist when the thickness of the total

double layer is equal to a half-wavelength. we can, therefore, perhaps con-

clude that, where a periodicity is found in the sub-bottom layering, low-

loss frequency bands should be found by, for example, the use of broadband sig- 0

nals such at those from explosive sources.

One of the several areas where SACLANTCEN has made bottom reflectivity

measurements is in the Tyrrhenian Abyssal Plain southwest of Naples. Figure

13-4 shows the reflection losses as a function of frequency and angle of
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incidence. The losses are strongly oscillating except within a very marked

band approximately 300 Hz wide where the losses are almost constant and in the

order of 2 to 3 dB. The center frequency is about 1500 Hz at 18.3 ° angle

of incidence. Correcting this to vertical incidence by cos 18.3*, we get f =

1430 Hz.

621 Degrees,-

603
58.3 A
57.1
55.8±

5207 _

4.6-i

, 4 .6 T  0
U 434
C
4) 41.0

36.41
344-'/~V

29.2- "

S27.3 7'1r

23.9

0 1 2 3 kHz

Figure 13-4. Reflection Losses as a Function of Frequency

for Different Angles of Incidence

Thus, it looks very much as if we were dealing with a system of periodic
' S

layers and an inspection of seven bottom cores taken within the reflecting area

shows a marked layering. Analyzing the density, we obtain an average wavelength

corresponding to a double layer on the order on 54 cm with a standard deviation

L = ~88%
q ~ ~~~~~~~ ....-cY .?S~ .. *~ .*4* ...* ~ ~
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of 10 cm. We should, therefore, expect a high-reflectance zone corresponding to

a wavelength of 108 cm - 54 •2, which again corresponds to a frequency f -

1560/108 - 1450 Hz, an excellent agreement. 9

Such periodic structures play an important role in other fields of wave

propagation. One example is the use of different coatings of optical devices,

either to reduce or enhance reflectivity; another, the Bragg reflections of X-

rays used in crystallographic research. 3
p

p
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CHAPTER 14

MEASUREMENT OF BOTTOM REFLECTIVITY

0

The experimental determination of the reflection coefficient is not always

a simple matter and many different techniques have been applied with varying

results. The problem divides itself into two parts: one concerning the experi-

mental set-up and the other concerning the analysis of the experimental data.

In the past some of the techniques used have been standing spherical wave

interference methods or correlation techniques with random noise. However, they

are not really practical in the true ocean with water depths up to several

thousands of meters. The technique we will discuss in detail uses explosive

sources and digital processing.

EXPERIMENTAL DETERMINATION OF THE REFLECTION COEFFICIENT

0
To measure the reflection coefficient over a wide frequency band and for

angles of incidence from vertical to close to grazing, the following technique

has been used by the SACLANTCEN during the past 20 years.

A receiving ship suspends a 750-meter vertical hydrophone string, while a

source ship moves on a predetermined fixed course, launching explosive charges

(500-1000 g TNT) set to explode at a depth of about 500 m. The launching

schedule is arranged so that bottom grazing angles between 5a and close to 900

are covered.

The direct and reflected acoustic signals are received by the hydrophones

in the string and recorded, in digital form, along with a radio pulse that is

transmitted from the source ship at the moment of reception of the direct

acoustic pulse. Acoustic travel times are computed from the radio signal, and

9
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in connection with radar observations, used to determine the trial geometry.

Figure 14-1 shows the experimental set-up.

Figure 14-1. Experimental Set-Up

For each station occupied by the receiving ship, the following supporting

environmental measurements are made:

a. bathymetry along source ship track

b. sound speed profiles

c. core samples

d. bottom stereo photographs.

REFLECTION-LOSS CALCULATIONS

Since the reflection coefficient at a layered bottom is frequency depen-

dent, simple and direct calculations cannot be made and one has to use Fourier

analysis techniques. Let d(t) and r(t) be the incident and reflected pulse

close to the bottom, as seen in figure 14-2.

I
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Figure 14-2. Ray Geometry

The frequency-dependent reflection coefficient H(w) is then obtained by

deconvolving the reflected spectrum by the incident spectrum as: 0

H'-R(w)( D(w)

where R and D are the Fourier transforms of r(t) and d(t), as

R((A) = ir(t) e - 1101 dt,

D(w) =fd(t) e-''t dt.

The reflection loss is then defined as L = -20 log I HI dB. The impulse response

h(t) is then determined as discussed previously as the inverse Fourier transform

of H(w),

h(t) = H(w) e -I dw.

In the experiment, the.direct and reflected pulses were not measured near

the bottom but instead measured in the water column after they had both been

attenuated along their propagation paths. The attenuation is the combined
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spreading loss and the frequency-dependent absorption and is determined by ray

tracing based on the measured sound-speed profiles.

Nominating the difference transmission loss in the water for a perfect

reflecting boundary as

A= TLRef - TLMiect,

the bottom loss is BL =-20 log D'(A)

where R'(w) and D'(w) correspond to the Fourier transforms of the reflected

and direct path of the received signal, for which an example is given in figure

14-3, along with their respective amplitude spectra. By dividing the Fourier

transform of the reflected signal by the Fourier transform of the direct signal,

the uncorrected reflection loss is obtained as shown on figure 14-4. The

impulse response is then calculated from the lowpass filtered deconvolved sig-

nal. The result is also shown on figure 14-4 with the noisy nonfiltered impulse

response.

Using the same hydrophones and recording channels for both the direct and

reflected signals makes this technique self-calibrating, and the use of several

hydrophones at different depths gives the capability to separate as many as

possible of the received pulses at low grazing angles, down to a few degrees.

Henceforth, we will use the grazing angle instead of the angle of incidence when

presenting results, a practice common in ASW.

Figure 14-5 shows an example of the measured frequency-dependent losses at

low and high grazing angles on a flat and smooth bottom. At high grazing

angles, one notices the interference pattern caused by reflections from the

different layers. Also, it should be noted that the lowest losses occur at
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higher frequencies because the reflections from shallow and thin layers are the

most dominant. At low grazing angles, the picture changes to an almost perfect

reflection of the lowest frequencies, due to one or several critical angles for

deeper layers, whereas the high frequency part exhibits large losses due to an

intromission angle in the shallower sediments.

The step functions superimposed on the loss curves are the 1/3-octave band

levels obtained by mathematical filtering.

SPECIFIC SEA FLOOR ACOUSTIC RUNS

To illustrate the technique, we will take a look at three different cases

from the Mediterranean as shown in figure 14-6. Reflections from a bottom con-

sisting mainly of turbidity sediments, from a bottom consisting mainly of soft

pelagic sediments, and from a rough bottom in a ridge area. The results are

presented in three types of displays:

a. The impulse response with a 500-5000 Hz bandwidth for different grazing

angles, using 80 and 20 ms time axes.

b. The reflection losses as isoloss contours in a frequency-angle plane

calculated in 1/3-octave bands.

c. The reflection losses as a function of grazing angle calculated in

octave bands.
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Figure 14-6. Positions of Acoustic Runs

Run 1. Southeastern Balearic Abyssal Plain

The Balearic Abyssal Plain is the most extensive abyssal plain in the

Mediterranean. The station where the bottom reflectivity was measured is

situated off eastern Algeria, on the southeastern part of this abyssal plain.

Along the acoustic run, the water depth varied from 2630 to 2615 m with a flat

sea floor. A core was taken at~ position 1 indicated in figure 14-6. The sedi-

ments consisted of fine-grained clays and carbonates interspersed with silt and

sand deposits transported by turbidity currents, probably originated by the
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steep Algerian continental slope. These turbidity layers are also very evident

from the impulse responses shown on figure 14-7.

The reflection losses, as seen in figures 14-8 and 14-9, show a clear

critical angle situation for low frequencies, as we would expect from the exis-

tence of the high sound-speed sand layer observed in the core. No evidence is 0

seen of high loss due to an intromission angle. only the first reflection from

the water/sediment interface indicates an intromission angle seen from the 1800

phase shift of the pulse at 13.5' grazing angle. This value corresponds to a •

sound-speed contrast of 0.98 and a density contrast of 1.4; such values are

typical of unconsolidated sediments and were also observed during the subse-

quent runs over a flat bottom.

Very marked reflections occur from layers A, B and C, situated at depths of

5 m, 12.5 m and 34 m. As the grazing angle diminishes, the pulse is critically

reflected from these layers, forming high-amplitude phase-distorted pulses that

dominate the impulse response at small angles. Note also a possible deep-

refracted arrival showing at 33* grazing caused by the velocity gradient in the

sub-bottom.

Run 2. Pantelleria Basin

This acoustic run was conducted in the Pantelleria Basin, situated

southeast of the island of Pantelleria. The basin is approximately 90 km long

and 30 km wide with a water depth of about 1300 m. A core (about 7 meters) was

taken in the area of position 2 as shown in figure 14-6. It consisted of soft

unconsolidated sediments with three layers of silt/sand-type turbidity

sequences.
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The impulse response seen in figure 14-10 clearly shows that we are dealing

with a bottom consisting mainly of soft, unconsolidated sediments with very few

hard layers. Only the layer A, which correspond to a depth of about 30 m, is

apparently hard enough to have a critical angle.

This is also seen from the loss plots on figures 14-11 and 14-12, where a

critical angle of about 10* is seen for frequencies of 100 to 200 Hz and a

clearly marked intromission angle occurs for the highest frequencies, with

losses of up to more than 20 dB. This means that this area is not suitable for

the use of hull-mounted bottom-bounce sonars.

Run 3. Mediterranean Ridge

The Mediterranean Ridge is the dominant physiographic feature of the east-

ern Mediterranean. It extends from the Italian continental rise between Crete

and Libya to Cyprus and is bordered by deep basins to the north and south. Its

length is approximately 1800 km and its width varies from 75 to 200 km. The

water depth at the run is approximately 2300 m, and the topography in general is

very rough with many hills and depressions reaching about 10 to 50 m in height

and 1 km or more in wavelength.

This type of structure gives overlapping, hyperbola-type bottom '-files of

the sea floor on the normal echo-sounding recordings. These are also clearly

observable from the impulse response, shown in figure 14-13. The pulses

obtained were of the chaotic type because the Fresnel (reflecting) zone moves

along the bottom showing marked focusing and defocusing effects for all frequen-

cies. This is also noticeable from the loss contours, shown in figure 14-14,

where a strong focusing is observed for grazing angles around 250.
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SUMMARY

Summarizing from the above and other measurements, we can conclude that

areas with high-porosity, unconsolidated sediments (run 2) in general have an

intromission angle at high frequencies and a critical angle at low frequencies,

whereas areas with turbidity sediments (run 1) show a critical angle situation

for all used frequencies. Even though the bottom material for run 3 creates a

critical angle situation, the roughness of the bottom plays the major role in

the reflectivity characteristics, showing marked focusing and defocusing effects

for all frequencies.

To give an idea of how the reflection losses vary over an area such as the

Mediterranean Sea, the results from 30 acoustic runs are shown in figure 14-16

and 14-17, again clearly showing a marked critical angle around a 200 grazing

angle. For the higher frequencies, the situation is more mixed with some of the

areas showing an intromission angle case and others--even for these frequencies--

showing a critical angle.

The losses for all runs are seen on figure 14-18 which represents some 6000

data points. From this, one will notice that the bottom in the Mediterranean

basins is a rather good reflector with losses generally less than 10 dB, even
I

for vertical incidence.

I
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CHAPTER 15

DATA ANALYSIS METHODS

In the previous chapter, we studied techniques to measure the reflection

coefficient as a function of frequency for selected angles of incidence in a

general way. Unfortunately, this type of representation is often too bulky for

certain purposes and one searches for something as an answer to the question:

What is the reflection coefficient for this bottom within something like 200

from grazing?

Several analysis and reporting techniques exist. We will look more in

detail for a comparison between the following categories, which have been listed

in a rather arbitrary manner:

a) Complete transfer function

b) Narrowband losses, long CW pulses

c) Total energy, bandpass filtered

d) Peak amplitude, broadband

e) Peak amplitude, bandpass filtered

f) Peak amplitude, bandpass filtered and time averaged ("sonar simulator").

To choose an exact and unbiased example by which to compare the results of

using the different methods of analysis, a large number of deep sea cores taken

in the North Atlantic were inspected in order to choose one whose structure

seemed to be characteristic in layering, sound velocity and density. To compute

the reflection coefficient, the relative sound velocity and density curves were

approximated by step functions that converted the bottom into a 19-layer model.

The results are shown in figure 15-1, which also shows the original measurement

of sound velocity in the sediment.
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Figure 15-1. Relative Sound Velocity and Relative Density Profiles

(Indices s and w refer to Sediment and Water)

COMPLETE TRANSFER FUNCTION

The calculations for the model are done using the previously described

transfer matrix technique. An example of how the reflection loss and the phase

shift appear for a 300 grazing angle is given in figure 15-2. As expected and

observed from experimental data, the reflection coefficient is a strongly oscil-

lating function with up to about 30 dB between maximum and minimum, whereas the

phase shift behaves in a less complicated way.

To represent the reflection loss as a function of both frequency and angle,

the contours for equal loss have been plotted in figure 15-3. This type of
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display represents the full information on reflection losses, corresponding to

specular reflections and pure frequencies.

From figure 15-3, it is very clear that it is meaningless to characterize

the reflection coefficient by a single number without at least specifying fre-

quency and angle interval.

oo~f~ 7

,, 1'/

2a :

I0-I X~.-,

70J

90

------5dB _ 10dB -15dB 20dB - 25dB

Ref lection Loss

Figure 15-3. Reflection Loss Contours
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NARROWBAND METHOD

Bottom-bounce sonars often use long CW pulses, corresponding to a very

narrow frequency band. The bottom losses are easily obtained from figure 15-3

by cuts in the surface for constant frequency. Figure 15-4 shows the losses for

a 3.5 kHz, 500 ms long, CW pulse. 0

Grazing Angle
90 W," 7W' 60" 50" AT 30 20' V" 0"

:25kHz 500 ms CW
- .....5kHz 4.5"effective beam width 0

S%

U, p -

o.

o 

25 5

Fiue15-4. 3.5 kHz Narrowband Reflection Losses

Large fluctuations can be noticed, especially near the marked intromission

angle caused by the presence of several low velocity sediment layers.

An actual sonar insonifies a finite area on the bottom, but for a flat,

smooth bottom the active reflecting area is determined approximately by the size

of the first Fresnel zone. This and the movement of the transducer means we have

to average the losses over a finite angle interval. In figure 15-4, the reflec-

tion losses for a 4.5* effective beamwidth are also drawn. Note that, even .%

after smoothing, large variations in the losses can be observed.

125

L5.
OWNB



TD 8129

TOTAL ENERGY METHOD

One of the most frequently used analysis methods is to measure reflected

energy in different band pass filters--normally octave or 1/3-octave filters.

The computation for the losses to be found by this method is rather simple since

we only have to integrate the transfer function in the frequency domain using

the appropriate filter window.

Figure 15-5 shows the results when using a 3.5 kHz center frequency for

computing the losses for octave and 1/3-octave filters. Note how the octave

filtering now almost masks the intromission angle, whereas this feature is

clearly recognizable for the 1/3-octave filter. As a reference, the pure 3.5

kHz losses are also shown by a dotted line.

Grazing Angle
917 Sor 70" 60" 50" 40r 3W 20" 10 o"0

0

20 , 1$ kHz

Octave Filter
-- t,3 Octave Filter

Total Energy ........ sooms CW Pulse
25

d8

Figure 15-5. Octave and 1/3-Octave Reflection Losses

(3.5 kHz Center Frequency)
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PEAK AMPLITUDE METHODS

One popular method to calculate the reflection coefficient has been to use

the ratio between the peak amplitude of the reflected and incident pulses. To

investigate the effect of this procedure, we will use the impulse response

obtained from the layering in figure 15-1. Figure 15-6 shows the responses

calculated for a sequence of angles. Also shown is the vertical layer impedance

scaled to travel time. Note the 1808 phase shift for the first reflection at an

angle near 190 due to the intromission angle for the upper layer. The compres-

sion in time with decreasing grazing angle due to the change in the vertical

wavenumber is also clearly shown.

If we are dealing with a single reflector, it would be correct to measure

the reflection coefficient from the broadband peak values due to the frequency

independence. The broadband losses are seen in figure 15-7, where the largest

peak has been used.

Grazing Angle
90 W 8. 70" 6O" 5W" Ai 3(r 20" 1O" 0"

10.

io-J

1

15 kHz20 -----..- - Broad Band ,

io Peak--"'-

25. Peak Amplitude Losses

dB

Figure 15-7. Peak Amplitude Reflection Losses
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Usually, however, as in our case, the reflection coefficient is frequency-

dependent and filtered peak values are used for the loss computations. Figure

15-8 displays the bandpass-filtered impulse responses using a Gaussian 1/3-

octave filter centered around 3.5 kHz. The reflection loss is computed from the

peak values.

The result has been added to figure 15-7. Contrary to the broadband data,

the filtered data again show the intromission angle and, by a comparison between

these data and the energy data from figure 15-5, we see that the peak amplitude

method, as expected, usually yields much higher losses.

SONAR SIMULATOR METHOD

Some sonars process their data by using reflected energy averaged over a

certain time window. For this reason, losses are determined in a similar way

using a so-called sonar simulator, an analog device consisting of a bandpass

filter, a half-wave rectifier and a lowpass filter. Losses thus obtained can be

computed from the impulse response, but due to the nonlinear characteristics of

the rectifier, the numerical computation has been done in several steps.

For the computations, Gaussian filters were used with 1/3-octave bandwidths

centered around 3.5 kHz and a time constant of 7 ms to 8 ms. The result is

shown in figure 15-9, which for comparison also contains the results from the

other applied methods. From this figure, we can conclude that, excert for a

small angle interval, the loss curves obtained in different ways show consider-

able divergence, in some cases more than 10 dB. In this particular example, the

methods using averaged and total energy yield almost identical results at

grazing angles of importance for bottom-bounce sonar applications. However,

when deeper interfaces are the important reflectors, one might expect differ-

ences in results between the two methods.
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Figure 15-8. 1/3 Octave Reflection Response and Layer Impedance
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Grazing Angle

9o' 60 7W 6" 5W 4o" 30 20" 0 ,0!
........ Soo ms CW (s)
- 1/3 Oct. Total Energy

-" Oct. Averaged (Simulator)
5 --- i/3 Oct Peak Ampl.

0 25- is k

Figure 15-9. Sonar Simulator Reflection Losses

From the above, we can conclude that only the complete transfer function

gives the correct solution for both short and long pulses. However, for practi-

cal purposes, the use of total energy filtered in 1/3-octave bands seems to be a

good compromise between ease of computation and the reporting of a reasonable

amount of resulting data.

131/132
Reverse Blank



TD 8129

CHAPTER 16

PREDICTION OF REFLECTIVITY

We have looked at the theory and the measurement of bottom reflectivity;

however, our key objective is to establish to what extent the bottom reflectiv-

ity can be predicted from knowledge of the acoustical parameters of the bottom.

For this purpose, a well controlled experiment was performed in the Naples

Abyssal Plain in the Tyrrhenian Sea at the position shown in figure 16-1.

N

42 ITALY

41 1?NAPLES

41-

TYRRHMEN IAN
Abyssal plain

38

Figure 16-1. Position of Tyrrhenian Abyssal Plain

At this location, the water depth is 3600 m and the bottom consists of a

large number of continuous clay and sand layers deposited by turbidity currents,

thereby serving as a model for a multilayered deep sea bottom.
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The measurements were made using the technique described in chapter 14

except that the receiving hydrophone was kept suspended 150 m above the bottom

in order for the layering to be as constant as possible over the isonified part

of the bottom. The explosive charges consisted of 500 g TNT with a depth

setting of 550 m which creates a bubble pulse period of 10 ms.

Figure 16-2 gives a detailed display of the first 27 ms of both the direct

and reflected pulses, showing the characteristic compression of the signals as

the angle of incidence changes from vertical incidence to grazing. Note also

the intromission angle at about 770 for the reflection from the water interface.

This situation was dealt with in detail in chapter 4 and the reflection losses

illustrated in figure 4-2.

n f , -" -

• ~4 77- -0 1 0 2 s0, 1111I 2 m

341.

7&9

713 
72-5 - - - - ~ --

0 5 10 15A-\ 20 25. Ms0 5 1 5 0 25M

Figure 16-2. Signal Shape as a Function of Angle of IncidenceI
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An inspection of the signals closest to vertical incidence showed that the

major part of the reflection happened within the first 55 ms, and this value was

therefore used for the truncation of the signals.

Figures 16-3 and 16-4 show examples of the reflection loss and phase shift

for 24.40 and 73.9 ° angles of incidence in the frequency interval 20 Hz - 5000

Hz. As predicted from the theoretical calculations, the loss is a strongly

oscillating function with up to 30 dB between the maximum and minimum loss.

+ 18

.... . ., . ... . • . ., •. .. . . . . ; . . •. "

I J1o 1 2 3 5 kHz .,°0 1  1
3idB Loss

Figure 16-3. Reflection Loss and Phase Shift for 24.40

The phase shift on the other hand, shows a rather linear frequency depen-

dence, indicating a time delay probably due to reflections from a major reflec-

tor. At the higher angles, there is a noticeable smoothing of the loss curve due

to the shallower penetration.
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+180

1 . 1,, ,I I I

0 2 3 5 kHz

20

3o- dB Loss

Figure 16-4. Reflection Loss and Phase Shift for 73.9*

Figure 16-5, which shows the losses for a 620 angle of incidence, with

respectively 31 ms and 95 ms integration times illustrates the effect of signal

length on the shape of the loss curve. As expected, the curve corresponding to

95 ms gives less loss for the lower frequencies and also shows faster oscilla-

tions due to the greater effective layer thickness.

Although the picture looks confused, the losses are found to behave in a

very systematic way if the angle is taken into consideration. Figure 16-6

displays the losses at different angles of incidence as a function of frequency.

We see that the maxima and minima are not randomly distributed but follow a h

well defined trend with the expected shift toward higher frequencies with an

increasing angle of incidence.
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Figure 16-5. Effect of Integration Length on Shape of Loss Curves for 62 °

For a better absolute determination of the losses as a function of fre-

quency and angle, the data have been used to construct a map (shown in figure

16-7) giving the reflectivity as isoloss contours for 5 dB, 10 dB, 15 dB and 20

dB. This picture clearly shows that the reflectivity cannot be described by a

single parameter without the specification of angle and frequency. A strongly

reflecting region is found around 18* incidence and 1500 Hz, with minimum losses

of about only 2 dB, and is caused by periodic layering, a subject studied in

detail in chapter 13. 0

The impulse response being the inverse Fourier transform of the complex

reflection coefficient has been calculated using a Gaussian filter in order to

avoid artificial overshoots and the result is seen in figure 16-8. One will

notice a strong reflection occurring for 18 at 14 ms which for vertical inci-

dence is equal to a depth of approximately 10 m, in fact at the depth where most

of the bottom cores taken stopped confirming the presence of a hard layer.
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Bottom Reflections
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Figure 16-8. Impulse Response for Different Angles of Incidence 9

So at this stage we have a pretty good description of the bottom reflec-

tivity. Let us now look at the actual bottom layering obtained from cores and

echo soundings.

A total of six cores were taken along the isonified area and an inspection

of them indicates that the layers are sloping down toward the west; therefore,

four characteristic depths, A, B, C and D, were chosen to correspond to marked
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changes in the layering. The depths are indicated in figure 16-9, which gives

the acoustic parameters for the core taken only 1000 m from the reflecting area.

1.7-

1.4-

901 1.3-

. 80- 1.2-

0.70-

01J
1.060-

1.040-

1.020-

1.00

A B C DSI II
II I I I I I I

200 400 600 800 cM

Figure 16-9. Core Parameters

Using these four characteristics from the six close cores, a multiple

regression analysis was used to correct the layer depths to obtain the depths at

the center of the isonified area and the geoacoustical model, .also indicated on

figure 16-9. The results, corrected for the sloping of the layers and the esti-

mated values of shear wave velocity and attenuation, are given in table 16-1.
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Table 16-1. Bottom Acoustic Constants for a 35-Layer Model

ALPHA BETA AA AB RHO THICKNESS

1. 000 1.00
.980 .05 .1 .1 1.39 .15
.980 .05 .1 .1 1.47 .21
.980 .05 .1 .1 1.40 .21

1.000 .10 .2 .2 1.53 .21
.980 .05 .1 .1 1.30 2.75
.980 .05 .1 .1 1.40 .21

1.005 .10 .2 .2 1.40 .21
1.020 .10 .3 .3 1.40 .16
1.020 .10 .3 .3 1.35 .16
1.050 .15 .5 .5 1.70 .22

.990 .05 .1 .1 1.35 .16
1.030 .10 .3 .3 1.66 .16

.990 .05 .1 .1 1.34 .05
1.010 .10 .2 .2 1.43 .16
.980 .05 .1 .1 1.48 .16
.980 .05 .1 .1 1.28 .21
.990 .05 .1 .1 1.36 .22

1.000 .05 .1 .1 1.40 .10
.990 .05 .1 .1 1.40 .16
.980 .05 .1 .1 1.43 1.38
.980 .05 .1 .1 1.50 .15

1.040 .15 .3 .3 1.67 .22
.980 .05 .1 .1 1.35 .16
.980 .05 .1 .1 1.48 .17
.980 .05 .1 .1 1.30 .16

1.035 .10 .3 .3 1.40 .16
.980 .05 .1 .1 1.35 .11

1.020 .10 .3 .3 1.52 .22
.980 .05 .1 .1 1.44 .22
.980 .05 .1 .1 1.48 .50

1.035 .15 .3 .3 1.75 .11
.990 .10 .1 .1 1.42 .16

1.040 .20 .3 .3 1.55 .11
.980 .10 .1 .1 1.46 .28
.980 .10 .1 .1 1.40

Based on the parameters for this model, computations are made to yield both

the reflection loss and impulse response for angles of incidence of 0*, 18*,

360, 540, and 720, using the techniques discussed in previous chapters. The

results are shown on figures 16-10 and 16-11.

We see that the two reflection loss curves are very similar except for the

lack of the high frequency components and higher losses (about 2 dB - 3 dB) for
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the theoretical curve, due to the limited depth for which the computations are

made. Also the characteristic low-loss intervals can easily be followed over

the angles.

PREDICTED MEASURED

01 0

10- 10I Af
20-12-

dB dB

0- 0

18- dB -~'l~'flf

2 3 kHz kHz

Figure 16-10. Theoretical and Experimental Losses

The theoretical impulse responses are computed using a Gaussian filter to

enable a comparison with the experimental data. Within the first part of the

signal (where we are representing the bottom with our model), we see that, con-

sidering the complicated sub-bottom structure, there is a good agreement between

the two groups of curves, both with respect to time and amplitude and over all

angles. Some peaks differ in magnitude, which is not surprising, considering

that the velocity had to be estimated for some parts of the sand layers where

the velocity is very difficult to measure.
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Figure 16-11. Theoretical and Experimental Impulse Response

Only for 728 does there seem to be some disagreement with respect to the

first pulse. An inspection of the core data shows that this is probably due to

a change in density a few centimeters below the bottom, a change that does not

seem to correlate with either the velocity function or the layering. The upper

right portion of figure 16-11 also shows the first pulse computed by ignoring

this change. One now observes a better agreement between the curves for all

angles of incidence.
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Therefore, we can conclude that a comparison between the measured losses

and impulse responses and the similar quantities computed from a 35-layer model

based on actual core data shows good agreement over different angles of inci-

dence with respect to frequency, time and amplitude.
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APPENDIX A

IBM-PC ROUTINES FOR REFLECTIVITY CALCULATIONS

Several computer models have been developed for calculating the complex

reflection coefficient for a general multilayered bottom. Unfortunately, the

more complete models run only on large mainframe computers and the existing

models available for microcomputers are usually too simple for serious studies.

For certain applications such as on board ships and aircraft and in research

environments where access to large computers is lacking or troublesome, it would

be desirable to convert some of the large and general reflection loss programs

to run on the popular IBM-PC type of personal computer.

Furthermore, it is often also very useful for the reader to have the

opportunity to have an on-line facility to test the influence of the different

bottom parameters on reflectivity. Therefore, an existing general multilayer

model, which is based on the classical Thompson-Haskell transfer matrix tech-

nique and runs on a UNIVAC system, has been rewritten in MICROSOFT FORTRAN.

This allows double precision of complex variables (in 16-byte length) to take

advantage of the 8087 co-processor to run on IBM-PC family microcomputers. The

program will not run without the 8087 co-processor.

The model calculates the reflection loss and the phase shift as a function

of angle of incidence and frequency for a multilayered bottom, taking into

account shear waves and attenuation. Additional procedures for disk file

manipulations and display of results have also been developed.

The model is not an operational one and no special techniques, such as

Knopoff's method, have been used to improve numerical accuracy for the matrix

operations. Therefore, for higher frequencies and close to grazing, lack of

accuracy and floating point overflow can occur. Some of these numerical prob-
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lems have been countered by dropping deeper layers when the potentials in a

layer were very small. Furthermore, no input data checking or error handling

has been included. However, despite these shortcomings it was felt that such a

PC facility could be useful and therefore is included.

The following will explain the different procedures and illustrate them by

some examples.

THE PROGRAMS

The disk "REPLOSS" contains several programs. The two main ones are

LAYER3.EXE and LAYER4.EXE which do the loss calculations: LAYER3 for a variable

angle of incidence and fixed frequency, and LAYER4 for a iariable frequency and

fixed angle of incidence. PL2.BAS and PL4.BAS plot loss and phase as a function

of angle of incidence and frequency, respectively. HELP.BAS is the program

which displays the different options on the screen.

The input files contain the relative acoustical parameters for the layers

and on this disk are usually named such as FLOOR1.DAT, although such nomencla-

ture is not required as long as it is a valid file name with the DAT extension.

The output files from LAYER3 and LAYER4 contain the reflection loss and phase

shift as a function of either angle or frequency and are on the disk named,

respectively, RESVIB.DAT or RESFI8.DAT, indicating whether the result is a

function of angle or frequency.

The programs CREATE.BAT, LIST.BAT, and FILES.BAT are utility programs for

editing or creating new input files for the acoustic parameters of the bottom,

for listing a file, and for displaying all the FLOOR and RES files on a given

disk. Programs PLOTV.BAT, PLOTF.BAT, HELP.BAT, LOSSV.BAT, and LOSSF.BAT are

batch programs used to tie it all together.
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HOW TO RUN THE PROGRAM

Before using the program, prepare a work disk in the following way. Format

a disk using the IS option and copy onto it from your DOS disk the files

BASICA.COM, GRAPHICS.COM and EDLIN.COM and finally all the files on the REFLOSS

disk. Set aside the original and use the work disk.

To start, boot the disk by pressing simultaneously the following three keys

<Ctrl> <Alt> and <Delete>, or from DOS type HELP. The following menu will

appear:

HELP MENU

---CREATE 'FILENAME'.DAT---Use to create an layer input file for LOSSV/LOSSF.

---LIST 'PILENAME'.DAT---List a data file. Do not include extension.

--PILES--Lists all data files of the type FLOOR*.DAT and RES*.DAT on the disk.
---LOSSV---Calculates the reflection loss as function of angle of incidence.

---LOSSP---Calculates the reflection loss as function of frequency.

---PLOTV/PLOTF---Plots loss and phase as function of angle or frequency.

---QUIT---

ENTER YOUR SELECTION -->

As an example of how to use the CREATE option, we will consider a bottom

consisting of two layers on top of a half-space with the characteristics shown

below, where ALPHA is the compressional wave velocity, BETA the shear wave

velocity, RHO the wet density, AA the compressional wave attenuation in dB/wave-

length, AB the shear wave attenuation in dB/wavelength and DEP the layer

thickness.

A
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Water
CW-1520 m/s RHO-1.03g/cc

1. Layer
ALPHA-1605m/s BETA-530m/s RHO-1.95g/cc AA-0.4 AB-0.6 DEP-.Om

-1.055 -0.35 -1.89 -0.4 -0.6 -1.0

2. Layer
ALPHA-1720m/s BETA-680m/s RHO-2.11g/cc AA-0.6 AB-0.8 DEP-l.5m

-1.13 -0.45 -2.05 -0.6 -0.8 -1.5

Half-Space
ALPHA-2840m/s BETA-1670m/s RHO-2.27g/cc AA-l.0 AB-1.5

-1.87 -1.1 -2.2 -1.0 -1.5

Since the programs LAYER3 and LAYER4 require the relative velocities and

relative densities, these must be calculated and the results are shown on the

line below the absolute values. Therefore, to create an input file named

FLOOR12.DAT, using the above example, type CREATE FLOOR12 <ENTER>. The computer

will display:

A>EDLIN FLOORl2.DAT

New file

The program uses the DOS line editor EDLIN, but any preferred editor could

be used. "I" starts the insert mode and ^C (same as <Ctrl> C) ends inserting.

The "E" ends editing and saves the file to disk. For further details concerning

the use of EDLIN to edit an existing file, consult the DOS manual. Enter I and

insert values calculated in the example shown, creating the file on screen:

*I

1:*2
2:*1.055 0.35 1.89 0.4 0.6 1.0

3:*1.13 0.45 2.05 0.6 0.8 1.5
4:*1.87 1.1 2.2 1.0 1.5
5:*^C

*E

where Line 1: is the number of layers.
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To indicate the end of inserting the calculated values as shown above, type

^C and complete editing with E.

To calculate the reflection loss as a function of angle, type LOSSV from

the HELP menu. For a hard copy of the results, ready the printer and type

<Ctrl> P before <ENTER>. Do not forget to turn the printer off by typing <Ctrl>

P again when the listing is terminated.

The program LAYER3.EXE will load and prompt:

LAYER CONSTANTS FROM DISK FILE (Y/N)?

If yes, the program will ask for the name of the file to use. Type the entire

filename and extension. When the file data comes on the screen, verify by yes S

or no that it is the file you want to use. If yes, the program will ask for the

minimum angle, the angle increment, and the maximum angle. Type in these angle

values. The program will then ask for the frequency. Type in the frequency

value.

At the termination of the LOSS program, you have the option to write the

results to a disk file for subsequent processing such as for graphic displays.

Choose a filename which relates to the input filename and shows the type of cal-

culation (V or F). For the preceding example, the filename could be RESV12.DAT.

The program LOSSF, which calculates losses as a function of frequency,

works in the same way as LOSSV.

To plot the angle-dependent results, type PLOTV. The program will ask for

the name of the output file (RES*.DAT) which contains the results to be dis-

played. The filename should match the type of plot selected (V or F) and must

include the .DAT extension. For example, to plot angle-dependent results from

RESV18.DAT, which is in drive A, enter A:RESVIS.DAT.
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If the PC is connected to a DOT matrix printer which can produce graphics,

print a hard copy of the results by pressing <Shift> <PrtSc>. To continue,

press a key. Answer "Y" if you want to leave PLOTV or PLOTF and return to the

HELP MENU. A similar procedure to plot results as a function of frequency is

contained in PLOTF and works in the same way.

Figures A-1 and A-2 show the results for an 18-layer sample input file,

FLOOR18.DAT, giving the reflection loss as a function of frequency and angle of

incidence. The phase shift is omitted but could also have been included if

required.

Sometimes it is convenient to see what data files of the format FLOOR*.DAT

and RES*.DAT exist on a disk. Selecting FILES from system will display them on

the monitor. Another facility available to display a data file is LIST, which

when used, must contain the file name, but without the extension .DAT (e.g.,

LIST RESF4).

Figure A-3 shows the acoustical parameters for some FLOOR*.DAT files on the

disk corresponding to different numbers of layers.

QUIT does what it says and clears the screen.
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INPUT FILE NAME -- FLOORO.DAT

ALPHA BETA RHO AA AB DEPTH

1.130 .400 2.050 1.500 2.500

INPUT FILE NAME -- FLOOR1.DAT

ALPHA BETA RHO AA AB DEPTH

1.055 .260 1.890 1.000 1.500 1.000

1.130 .400 2.050 1.500 2.500

INPUT FILE NAME -- FLOOR2.DAT

ALPHA BETA RHO AA AB DEPTH

1.055 .350 1.890 .400 .600 1.000

1.130 .450 2.050 .600 .800 1.5000

1.055 1.100 2.200 1.000 1.500

INPUT PILE NAME -- FLOOR3.DAT

ALPHA BETA RHO AA AB DEPTH

.970 .200 1.500 .100 .100 .500

1.040 .400 1.800 .400 .600 1.000

1.130 .600 2.050 .600 .900 1.500

1.870 1.100 2.200 1.200 1.500

INPUT FILE NAME -- FLOOR4.DAT

ALPHA BETA RHO AA AB DEPTH

.970 .010 1.300 .300 .600 1.000

1.050 .100 1.600 .500 .600 2.000

1.130 .300 1.900 .800 1.000 1.500

1.300 .400 2.050 1.200 1.200 .500

1.870 1.100 2.200 1.500 2.500

Figure A-3. Content of FLOOR* .DAT Files
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INPUT FILE NAmE -- FLOOR18.DAT

ALPHA BETA RHO AA AB DEPTH

.960 .050 1.350 .100 .100 1.000

.985 .050 1.400 .100 .100 .450
1.030 .100 1.700 .200 .200 .200
.960 .050 1.350 .100 .100 .600

1.030 .100 1.700 .500 .500 .250
.980 .050 1.400 .100 .100 .750

1.025 .100 1.650 .500 .500 .350
1.040 .150 1.750 .500 .500 .400
1.075 .200 1.900 .700 .700 .350
1.010 .100 1.550 .500 .500 .100

-b1.100 .250 1.950 1.000 1.000 .250
.975 .050 1.400 .200 .200 .750
.985 .100 1.500 .200 .200 .500
.975 .100 1.450 .200 .200 1.200
.965 .100 1.400 .200 .200 2.500

1.030 .150 1.750 .500 .500 .300
1.110 .300 2.100 1.000 1.000 .500
.980 .100 1.450 .200 .200 1.000

1.050 .200 1.800 .700 .700

Figure A-3. Content of FLOOR*.DAT Files (Cont'd)
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APPENDIX B

HALF-SPACE PARAMETERS

Information concerning the vertical incidence reflection coefficient and

the intromission angle or critical angle can be used to quickly calculate the

equivalent density and sound velocity at the water-sediment interface if we

assume the bottom to act as a half-space.

From chapter 4 we have for the reflection coefficient this expression:

R = Cos 0 - %/a 2 - sin 2 a

p cos e + V1/ar- sin 2 e

For vertical incidence, it is reduced to:

avr p a -

or
1 + Rvet

p a 1 - Rert

The other information we have is from the reflection coefficient as a func-

tion of angle. If a < 1, we have the intromission angle for which the loss is

maximum and a sudden shift in phase from 0 to 1800 with the angle being deter-

mined by:

sin 2"

For a > 1, we have a critical angle case where the angle is determined by:

8c, = arc sin (-).
a

which enables us to calculate a and P if Rvert and t8 or 6cr are observed.

Figure B-1 shows the relationship between the vertical incidence loss (-20

log R) , relative velocity, relative density and the characteristic angle

involved. Also plotted is the curve corresponding to Woods equation, relating

density, velocity and porosity. Because of the marked intersection between the
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loss curves and the angle curves, a good determination of a and P is theoreti-

cally possible.

As an example, look at figure 4-2, which has a vertical loss L = 16.5 dB

and Oe = 760. Figure B-1 indicates that a =0.975 and p 1 .38 f ully in agreement

with the measured values.

6__V-- ___i
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APPENDIX C

ACOUSTIC CHARACTERISTICS OF THE SEA FLOOR

No doubt there is little purpose in trying to make predictions of the

bottom reflectivity without some a priori knowledge of the layering of the

bottom and its acoustical parameters. Several measurements have been made using

echo soundings, seismic profiling, laboratory measurements on core and drilling

samples, and most important of all in situ measurements. Also inverse methods

such as using some knowledge about the bottom and then fitting modelled results

to the experimental reflection or transmission loss data have yielded valuable

information concerning certain bottom parameters. No attempt will be made to

look into the physics of special models such as Biot, since it is the conviction

of the author that such refinements are not yet required as long we are missing

first order data for a large number of cases for practical requirements in ASW

predictions.

Since our knowledge in this field is continually changing, this appendix

will only summarize the range of the values of some of the acoustic parameters

used for bottom reflection coefficient calculations. Readers are recommended to

consult the substantial and recent documentation available.

Let us first list some of the most important geoacoustic values desirable 0

to know:

a) layer composition

b) layer geometry including thickness and slope

Jill

c) compressional wave (sound) velocity

d) shear wave velocity

e) density

f) attenuation of compressional waves

Ji
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g) attenuation of shear waves

h) for all of the above parameters, their dependence on depth.

The depth to which information is required depends on the frequency, the

angle of incidence and the impedance of the layers. Usually we are talking of

meters for frequencies in the kHz range down to hundreds of meters or even km

for infra-sonics.

Unfortunately, the available amount of data are insufficient and probably

will stay so, despite a continuing effort in this field caused by an increasing

requirement for a better knowledge due to the development of future realistic

acoustic prediction models. We are, therefore, faced with the reality of life

where we are constrained to use what is available and, supported by marine

geology, to make interpolations and extrapolations. We are also required to do

some intelligent guessing in order to obtain the needed geoacoustical parameters

for the bottom of interest. A large number of measurements on marine sediments

have been made in the past years, and to the author's knowledge, the most

complete critical review and compilation of these has been made by Edwin L.

Hamilton, Naval Ocean Systems Center, San Diego. The following are extracts

from his work supplemented by a number of data collected by the SACLANTCEN from

measurements made on bottom cores.

It is not the purpose of this report to go into details on the values of

the acoustic parameters to select for a given situation, but only to give some

guidelines to the user. For more detailed information, one should consult the

most recent relevant information available.

Before quoting possible values for the parameters of interest, let us

return briefly to the concept of porosity as discussed in previous chapters.

Porosity is an extremely practical parameter used to describe a marine sediment
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and is defined as the ratio (often in percent) of the void volume to the solid

volume of a sample. Furthermore, it can easily be measured by simple techniques

using a precession scale and even a normal kitchen stove. Suppose the wet sedi-

ment sample weighed W gr before any loss of porous liquid and weighed D gr after

being dried at a temperature below which chemical-bound water is not released.

From the definition of the porosity n and some straightforward calculations, we

arrive at the following expression for the sample's porosity:

W-DPs w
S W-D

1+ 60S - 1) W

with Ps as the solid bulk density under the assumption that no decomposition

takes place and that the solid bulk density remains constant. In general, by

using ps = 2.7 good practical results are obtained.

Other important parameters exist to describe marine sediments such as grain 0

size; however, these are not as easily measured as the porosity.

1) Compressional Wave Velocity and Density

Previously, we investigated the use of porosity as the parameter in the

Woods equation to relate sound velocity and wet density under the assumption

that one could regard a sediment as a two- or three-component mixture and to

show that these assumptions are fairly valid. Figures C-1 and C-2 show the

relative density and compressional (sound) velocity as a function of porosity

based on approximately 15,000 and 8000 samples, respectively, from both deep sea

and continental shelf cores.

Table C-i lists some characteristic values of the ranges of porosity n,

density and compressional wave velocity for different sediment types found in

certain marine environments important for ASW.
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Table C-i. Characteristic Values for Density, Sound Velocity, and Porosity

for Various Sediment Types

Sediment Type Relative Density Relative Sound Vel. Porosity %

Continental
Shelf
Sand

Coarse 1.99 1.20 39

Fine 1.90 1.15 46

Very fine 1.82 1.12 50

Silty sand 1.74 1.08 55

Sandy silt 1.74 1.08 54

Silt 1.71 1.06 56

Sand-silt-clay 1.56 1.03 66

Clayey silt 1.46 1.01 72

Silty clay 1.39 0.994 76

Abyssal Plain
Clayey silt 1.43 0.999 74

Silty clay 1.32 0.991 81

Clay 1.33 0.983 80

Abyssal Hills
Clayey silt 1.32 0.995 81

Silty clay 1.32 0.986 81

Clay 1.39 0.976 78

Sand-silt-clay 1.41 1.02 75

Silt-clay 1.38 1.00 77

Rocks

Sedimen. rock 2.55 2.45

Basalt 2.60 3.47
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In almost all cases, measurements in nature have shown a distinct increase

in the coupressional wave velocity with depth, with the result that, at smaller

grazing angles and low frequencies, the sound energy penetrating into the bottom

is not only being reflected but also refracted back into the water column.

Examples of such refracted waves are observable in figures 14-6 and 14-9 in

chapter 14.

This gradient could be taken into account when preparing input data to the

two computer models covered in appendix A by creating a set of thin layers

simulating a velocity gradient if required. Good values to use for the gradient

of the compressional waves in the upper layers range from 1.1 to 1.5 S-I.

2) Shear Wave Velocity

If our knowledge of compressional wave velocities is somewhat limited,

unfortunately much less is available concerning shear wave velocities. Perhaps

for two reasons: One is that historically in ASW it was electronic engineers or

scientists who were the pioneers. They were little acquainted with the exis-

tence and importance of shear waves from the theory of elasticity of solids.

More important is the fact that it is much more difficult to measure shear wave

characteristics than compressional wave characteristics for several reasons.

One problem is to ensure proper coupling between the measuring probes and the

sediment. Another is the fact that shear in a sediment to a certain extent is

transmitted through its chemical bounds which are easily destroyed either by the

sediment sampling or by the insertion of the measuring sensors in the samples.

This is very unfortunate, since for consolidated sediments, shear waves can be

extremely important because of the role they play in carrying converted incident

compressional energy away from the water-sediment boundary and as such are

subject to a higher attenuation and may be converted into interface waves

C-6



TD 8129

(Scholte type). All these factors result in a softening effect and thereby a

reduction of the bottom reflectivity.
S

Studies have shown that shear wave velocities can be related to compres-

sional waves velocities, but unfortunately not in the same fixed ratio. For

practical reasons, three intervals of relative compressional wave velocities a

with their associated relative shear wave velocity / dependence have been iden-

tified. Let us look at those cases:

a) 0.989 < a < 1.017

= 3.884 a a - 3.765

b) 1.017 < a < 1.079

0 = 1.137 a a - 0.971

c) 1.079 < a < 1.406

6= 0.648 - 1.136 a a + 0.719 - a2

To obtain an idea of the relative shear wave velocity as a function of

depth below the water-sediment interface, the following expression for fine sand

can be used:

= 0.084 x D°28

where D is depth of the sediment in meters.

3) Attenuation of Compressional Waves

A large number of measurements of the attenuation of compressional waves in

marine sediments have been made covering a frequency range from 10 Hz to 1 MHz.

The results show that the attenuation in dB/m varies remarkably well with the

first power of frequency, which again corresponds to a constant dB per wave-

length as used in the previous calculations. However, in order to be consistent
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with attenuation values reported in the literature, we will use for the attenua-

tion the expression:

AA = k, " f

where f is in kHz, AA in dB/m and kc the attenuation coefficient. Also here, as

for the densities and compressional wave velocities, we will use porosity as the

independent variable. Figure C-3 shows the result of a large number of measure-

ments indicating a maximum attenuation around a porosity of 50 to 55 percent

corresponding to silty sand. For solid rocks like limestone or basalt, k is

in the order of 0.02 to 0.03.
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Figure C-3. Attenuation Coefficients for Compressional Waves

as a Function of Porosity

Very little data are available to determine the depth dependence on the .

compressional wave attenuation, but some data indicates only a little effect in
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the first meters of the sediments. For deeper sediments consisting of silt-

clays, the data seems to show an increase with depth, whereas for sand-silt it

appears that the attenuation decreases with about the -1/6 power of the overbur-

den pressure.

4) Attenuation of Shear Waves

Similar to measurements for the compressional waves, measurements of the

attenuation of shear waves indicate a linear relationship. Again, we can use

the expression: 0

AB=k' f

where f is the frequency in klz, AB in dB/m, and kc the attenuation coefficient.

Table C-2 gives examples of values for k for different materials.

Table C-2. Characteristic Values for the Attenuation Coefficient

for Various Sediment Types

Material kc

Diluvial sand 13.20

Diluvial sand and clay 4.80

Alluvial silt 13.40

Mud (silt-clay) 17.30

Water-saturated clay 15.20

Tertiary mudstone 10.10

Solenhofen limestone 0.04

Chalk 0.10

Basalt 0.07

Concerning the depth dependence of the shear wave attenuation, it can be

assumed that it varies proportionally with the compressional wave attenuation.
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The above values for the geoacoustical parameters in marine sediments are

only given to show within which values they are to be expected in nature. For

the purpose of constructing a proper geoacoustical model, readers are referred

to the large and detailed amount of information available in the open

literature.
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